

# Poole Park Miniature Railway – Borough of Poole

# **Factual Report**

**NOVEMBER 2018** 



## Poole Park Miniature Railway - Borough of Poole

## **Factual Report**

Written By

Devon Wilson BSc (Hons) FGS

**Checked By** 

Anthony Elkins BSc (Hons) MSc FGS

Approved by

Charlotte Wheatley BSc (Hons) MSc FGS CGeol

Alle. Chalette Wheetley

Report Ref

18-96795

#### **Issue Number**

| Issue | Revision No. | Date Issued | Description of Revision | Reviewed by: |
|-------|--------------|-------------|-------------------------|--------------|
| 01    |              | 15/11/2018  |                         |              |

Site Address
Poole Park Miniature Railway
Poole Park
Poole
BH15 2SF

Client Address
Borough of Poole
Unit 1 New Fields Bus. Park
Stinsford Road
Poole
Dorset
BH17 0NF

All rights, including Copyright, in this report belong to ACS Testing. The report shall be for the private and confidential use of the Client for whom it has been prepared and may not be reproduced, in whole or part, or relied upon by Third Parties without the express written authority of ACS Testing. © 2018

## **CONTENTS**

| 1 Introduction                                  | 1  |
|-------------------------------------------------|----|
| 1.1 Terms of Reference                          | 1  |
| 1.2 Site Setting                                | 1  |
| 1.3 Scope                                       | 1  |
| 1.4 Proposed Development                        | 1  |
| 1.5 Limitations                                 | 2  |
| 2 Intrusive Investigation                       | 3  |
| 2.1 Ground Investigation                        | 3  |
| 2.2 Geotechnical and Geochemical Testing        | 3  |
| 3 Ground Conditions                             | 5  |
| 3.1 Ground Conditions Encountered               | 5  |
| 4 Bridge Investigation                          | 8  |
| 5 Geotechnical and Geochecmial Analysis Results | 9  |
| 5.1 Ground Corrosive to Concrete                | 9  |
| 5.2 Standard Penetration Testing                | 9  |
| 5.3 Dynamic Probe Testing                       | 10 |
| 6 Waste Soil Classification                     | 11 |
| 6.1 Classification of Waste                     | 11 |
| 6.2 Total Solids Testing                        | 11 |
| 6.3 Waste Acceptance Criteria Testing           | 12 |



## **APPENDICES**

Figure 1 – Site Location Plan

Figure 2 – Exploratory Hole Location Plan

Figure 3 – Standard Penetration Results vs Depth

## Appendix A

Exploratory Hole Logs

## Appendix B

Geochemical Test Results

## Appendix C

Photographic Record

## Appendix D

CAT Waste Output



## 1 INTRODUCTION

#### 1.1 Terms of Reference

ACS Testing Ltd (ACS) were instructed by Cally Barnes from the Borough of Poole (the Client) in October 2018 to carry out a site investigation, laboratory testing and prepare a factual report for a site comprising Poole Park Miniature Railway, Poole Park, Poole, BH15 2SF.

## 1.2 Site Setting

The 'Site' is located within Poole Park, within the town of Poole, Dorset. The Site comprises a circular narrow-gauge railway of 10½ inch gauge running for approximately 640m. Part of the railway crosses an ornamental pond over a stone and concrete bridge. In the east of the railway there is a small engine shed with a turntable. The Site is as defined on Figure 1 and Figure 2.

## 1.3 Objective and Scope

The objective of this study is to provide geotechnical parameters to assist in the design of the proposed structures, and to provide soil geochemical information to inform waste soil disposal. It is understood that this information will be provided to contractors tendering to carry out the proposed development works. To enable this to be tendered an understanding of the ground condition beneath the railway track is required.

The scope of this study is as follows;

- Thirteen trial pits adjacent to the track and two on either side of the bridge excavated to a maximum depth of 1.00 metres below ground level (mbgl).
- ▶ Eighteen windowless boreholes drilled to a maximum depth of 4.00mbgl
- In situ geotechnical Standard Penetration Tests (SPT) at 1m vertical intervals within the windowless boreholes.
- Dynamic probe testing undertaken in boreholes where the proposed depth could not be achieved
- Take and submit soil samples for geotechnical and geochemical laboratory testing scheduled by the Client.
- The preparation of a factual report.

Due to an increase of the initial scope of works, the site investigation works were undertaken over two periods, the first between the 1<sup>st</sup> to the 5<sup>th</sup> October 2018 which comprised all the trial pits and thirteen of the windowless boreholes. The second phase was between the 18<sup>th</sup> and 19<sup>th</sup> October 2018 and comprised a further five windowless boreholes.

## **1.4 Proposed Development**

We understand that the proposed development may include; ongoing maintenance and improvements of the track and bridge, replacement of the railway track with a similar or larger gauge and the extension of the railway track into a larger loop.



#### 1.5 Limitations

ACS carried out the site investigation, collection of samples and laboratory analysis. It should be appreciated that there may be areas of the Site that have not been investigated where ground conditions may vary from those encountered. The contaminant concentrations or sub-surface features revealed may be more widespread than identified by the investigation carried out by the Client.

This factual report has been produced by ACS in accordance with the instructions received from the Client. The information contained in this report is intended for the use of the Client pursuant to the development described above. The information contained herein may not be appropriate to other development proposals.

We confirm that in preparing this report we have exercised reasonable skill and care as would be expected of a suitably qualified and experienced geoscience consultant working within the limits of the Client's instructions.

No liability can be accepted for information in other data sources or conditions not revealed by the sampling or testing. Any comments made on the basis of information obtained from the Client or other third parties are given in good faith on the assumption that the information is accurate; no independent validation of such information has been made by ACS Testing Ltd.



## 2 INTRUSIVE INVESTIGATION

## 2.1 Ground Investigation

An intrusive ground investigation was undertaken by ACS on Poole Park Miniature Railway, Poole comprising thirteen trial pits and eighteen windowless boreholes with in situ standard penetration testing. Dynamic probe testing was undertaken in boreholes where the maximum proposed depth could not be achieved by dynamic sampling to provide data on the ground bearing capacity. The locations of the boreholes are shown on Figure 2. Exploratory hole logs are included as Appendix A.

The positions of the exploratory holes were specified by the Client. Where possible each location comprised a trial pit to 1.0mbgl, followed by a borehole drilled through it or adjacent to the pit. A utility service drawing was provided by the Client and all locations were scanned with a Cable Avoidance Tool. A high voltage electricity cable is located beneath the track in the western part of the site which restricted investigation in this area.

## 2.2 Geotechnical and Geochemical Testing

In situ Standard Penetration Testing (SPT) was undertaken at regular vertical intervals within all windowless boreholes. Where the windowless boreholes could not achieve the specified 4mbgl depth, Super Heavy Dynamic Probe (DPSH) tests were undertaken within the boreholes to prove the density of material at a greater depth than the windowless sampling.

The following samples, scheduled by the Client, were submitted for testing -

- 9 general chemical suite metals, benzene/toluene/ethylbenzene/xylene (BTEX), soil organic matter, speciated polycyclic aromatic hydrocabons (PAH), polychlorinated biphenyls (PCB), speciated total petroleum hydrocarbons (TPH), pH.
- 9 Waste Acceptance Criteria (WAC)
- 8 pH and water soluble sulphate.

The geochemical laboratory test result certificates are included as Appendix B.

The investigation sampling and analysis plan are summarised in Table 1. The geotechnical and geochemical testing was scheduled by the Client's senior engineer.



Table 1 Summary of Sampling and Analysis Plan

| Exploratory<br>Hole    | y of Sampling and Analysis Plan  Reason for Location | Depth of<br>Sample<br>(mbgl) | Testing                                           |  |
|------------------------|------------------------------------------------------|------------------------------|---------------------------------------------------|--|
| DPA                    | Through southern bridge arch                         | n/a                          | n/a                                               |  |
| DPB                    | Through northern bridge abutment                     | n/a                          | n/a                                               |  |
| TP01/WS01              | Adjacent to northern bridge abutment                 | 0.23-0.42                    | General chemical suite, waste acceptance criteria |  |
|                        |                                                      | 0.65-1.00                    | pH and water soluble sulphate                     |  |
| WS02                   | Through southern bridge abutment                     | n/a                          | n/a                                               |  |
| WS02A                  | Through central bridge pier                          | n/a                          | n/a                                               |  |
| WS03/TP02              | Adjacent to southern bridge abutment                 | 0.21-0.63                    | General chemical suite, waste acceptance criteria |  |
| TP03                   | Beside Track (shallow tree roots)                    | 0.42-0.87                    | pH and water soluble sulphate                     |  |
| TP04/WS04              | Beside Track (between points)                        | n/a                          | n/a                                               |  |
| TP05/WS05              | Beside Track                                         | 0.00-0.66                    | General chemical suite, waste acceptance criteria |  |
|                        |                                                      | 0.66-1.00                    | pH and water soluble sulphate                     |  |
| TP06/WS06              | Beside Track                                         | n/a                          | n/a                                               |  |
| TP07/WS07 Beside Track | Beside Track                                         | 0.08-0.32                    | General chemical suite, waste acceptance criteria |  |
| 11 07/11007            | FUT/W30T Beside Hack                                 |                              | General chemical suite, waste acceptance criteria |  |
| TP08/WS08              | Beside Track                                         | 0.29-0.58                    | pH and water soluble sulphate                     |  |
| TP09/WS09              | Beside Track                                         | 0.00-0.39                    | General chemical suite, waste acceptance criteria |  |
|                        |                                                      | 0.76-1.00                    | pH and water soluble sulphate                     |  |
| TP10                   | Beside Track                                         | n/a                          | n/a                                               |  |
| TP11/WS11              | Beside Track                                         | 0.00-0.21                    | General chemical suite, waste acceptance criteria |  |
|                        |                                                      | 0.47-1.00                    | pH and water soluble sulphate                     |  |
| TP12/WS12              | Beside Track (shallow tree roots)                    | n/a                          | n/a                                               |  |
| TP13/WS13              | Beside Track                                         | 0.00-0.64                    | General chemical suite, waste acceptance criteria |  |
|                        |                                                      | 0.64-1.00                    | pH and water soluble sulphate                     |  |
| TP14/WS14              | Beside Track                                         | 0.15-0.60                    | General chemical suite, waste acceptance criteria |  |
|                        |                                                      | 0.60-0.94                    | pH and water soluble sulphate                     |  |
| WS15                   | Beside Track                                         | n/a                          | n/a                                               |  |
| WS16                   | Beside engine shed                                   | N/A                          | N/A                                               |  |
| WS17                   | Possible track extension area                        | N/A                          | N/A                                               |  |
| WS18                   | Possible track extension area                        | N/A                          | N/A                                               |  |
| WS19                   | Possible track extension area                        | N/A                          | N/A                                               |  |



## **3 GROUND CONDITIONS**

## 3.1 Ground Conditions Encountered

The ground conditions encountered during the Site investigation are summarised in Table 2 below. Full details are provided in the exploratory hole logs included as Appendix A and a photographic record of the investigation is included as Appendix C.

Table 2: Summary of strata in trial pits

| Strata                    | Exploratory Holes                                                                                                      | Depth to Base of Stratum<br>(mbgl) |
|---------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Hardstanding              | DPB, TP01/WS01, TP02, WS02A, WS02,                                                                                     | 0.02-0.16                          |
| (Bound Macadam)           | TP03, WS03 TP07/WS07, TP10, WS16                                                                                       | 0.42 (sub-layer within TP03)       |
|                           |                                                                                                                        | 0.30 (in southern face of TP01)    |
| Hardstanding              | DPA, DPB, WS02, WS02A TP01/WS01 &                                                                                      | 0.40 (in northern face of TP02)    |
| (Concrete)                | TP02                                                                                                                   | 0.17-0.24 (bridge - deck)          |
|                           |                                                                                                                        | 0.87-1.55 (beneath bridge)         |
| Topsoil (TS)              | TP09/WS09, TP11/WS11, TP12/WS12,<br>WS18, WS19                                                                         | 0.16-0.56                          |
| Made Ground (MG)          | All except: TP09/WS09, TP11/WS11, TP12/WS12, WS18, WS19                                                                | 0.28 -0.87                         |
| Tidal Flat Deposits (TFD) | All except: DPA, DPB, TP05/WS05, WS18                                                                                  | 0.81-2.42                          |
| Peat (part of TFD)        | TP01/WS01, TP02, WS02, TP03, WS03, TP04/WS04, WS05, TP06/WS06, TP07/WS07, WS08, TP09/WS09, TP14/WS14, WS15, WS17, WS19 | 0.74-2.42                          |
| Poole Formation (PF)      | All except: DPB, WS02A, TP02, TP03, TP11                                                                               | Proven to 4.00                     |

## 3.1.1 Hardstanding

Macadam surfacing was recorded in ten of the exploratory holes; DPB, TP01/WS01, TP02/WS02/WS02A, TP03/WS03, TP07/WS07, TP10 and WS16. The depth of the macadam was typically recorded between 0.02-0.16mbgl. A secondary layer of macadam was encountered within TP03 at a depth of 0.42mbgl.



Concrete surfacing was recorded during the investigation of the pedestrian and railway bridge within DPA, DPB, WS02 and WS02A. All four cores recorded between 0.13m and 0.15m of light greyish brown concrete making up the surface of the bridge deck reinforced with 8mm rebar. In DPB, WS02 and WS02A the surface layer comprised an additional 20-40mm of bound macadam. The construction of the bridge and the further concrete encountered at depth is discussed in detail in Section 4.

#### 3.1.2 Made Ground

Made ground was encountered in all exploratory holes with the exception of TP09/WS09, TP11/WS11, TP12/WS12, WS18 and WS19. The made ground was revealed to vary in composition from light brown, dark brown and dark grey very gravelly fine to coarse sand or very sandy fine to coarse gravel of flint, brick, concrete and clinker. Occasional limestone boulders were recorded within TP13 and occasional metal fragments were recorded within TP14. The exploratory holes adjacent to or on the bridge revealed light greyish brown hardcore fill comprising gravel and cobbles of flint, brick and concrete.

## 3.1.3 Topsoil

Topsoil was recorded in five of the exploratory holes; TP09/WS09, TP11/WS11, TP12/WS12, WS18 and WS19 in the north-west section of the railway. The topsoil was recorded to comprise either a very soft to soft dark brown or grey slightly gravelly sandy silt or a dark greyish brown slightly gravelly silty fine to coarse sand. The gravel is fine to coarse sub-angular to sub-rounded of flint. Frequent roots and rootlets were recorded in all locations except WS18 which had only occasional rootlets.

#### 3.1.4 Tidal Flat Deposits

Tidal Flat Deposits were encountered in all exploratory holes with the exception of DPA, DPB, , TP05/WS05, WS18. The deposits comprised a unit of light brown, greyish brown or brownish grey slightly gravelly silty fine to coarse sand interbedded with dark brown or greyish brown mottled dark grey slightly sandy to sandy pseudo-fibrous peat. Within WS17 a layer of firm dark grey very sandy organic silt with a strong organic odour was recorded. Rare layers of dark grey slightly gravelly sandy organic clays were also recorded. The depth of the Tidal Flat Deposits ranges from 0.81-2.42mbgl with the greatest depths recorded in the south-western and north-eastern sections of the railway.

#### 3.1.5 Poole Formation

The Poole formation was encountered in all windowless boreholes proven to a depth of 4.00mbgl. The unit was found to generally underlie the Tidal Flat Deposits with the shallowest depths encountered being 0.56mbgl. The Poole Formation was found to comprise either a light grey mottled orange, occasionally clayey, fine to coarse sand, a light brown / grey slightly gravelly to gravelly fine to coarse sand, a soft light grey mottled orange very sandy silt or a soft light grey very sandy clay. The gravel was fine to coarse sub-angular to sub-rounded flint.

The presence of running sands within the Poole Formation presented challenging drilling conditions which meant that seventeen boreholes were not sampled to their intended depth.



## 3.1.6 Groundwater

Table 3 summarises the groundwater encountered during the Site investigation. Full details are provided in the exploratory hole logs included as Appendix A.

Table 3: Summary of Groundwater Observations

| Exploratory Hole<br>Reference | Groundwater Strike<br>(mbgl) | Geology of Strike         | Rest Water Level After<br>20 Minutes (mbgl) |
|-------------------------------|------------------------------|---------------------------|---------------------------------------------|
| WS01                          | 2.00                         | Sand (PGF                 | 2.00                                        |
| TP02                          | 0.65                         | Sandy peat (TFD)          | 0.62                                        |
| WS02                          | 1.00                         | Cobble sandy gravel (MG)  | 1.00                                        |
| TP03                          | 0.64                         | Gravelly sand (MG)        | 0.64                                        |
| WS03                          | 1.03                         | Sandy peat (TFD)          | 1.00                                        |
| WS04                          | 1.08                         | Sand (PF)                 | 0.62                                        |
| WS05                          | 0.62                         | Gravelly silty sand (MG)  | 0.61                                        |
| WS06                          | 1.00                         | Sandy peat (TFD)          | 0.98                                        |
| WS07                          | 1.91                         | Sand (PF)                 | 1.57                                        |
| WS08                          | 1.00                         | Clayey sand (TFD)         | 0.87                                        |
| TP09                          | 0.73                         | Sandy peat (TFD)          | 0.73                                        |
| WS09                          | 0.60                         | Sandy peat (TFD)          | 0.54                                        |
| TP11                          | 0.84                         | Gravelly sand (TFD)       | 0.82                                        |
| WS11                          | 0.32                         | Gravelly silty sand (TFD) | 0.24                                        |
| WS12                          | 1.44                         | Sand (PF)                 | 1.12                                        |
| WS13                          | 1.00                         | Silty sand (TFD)          | 0.99                                        |
| WS14                          | 1.00                         | Silty sand (PF)           | 0.98                                        |
| TP15                          | 0.93                         | Silty sand (PF)           | 0.93                                        |
| WS15                          | 1.00                         | Silty sand (PF)           | 0.78                                        |
| WS16                          | 1.30                         | Gravelly sand (PF)        | 0.48                                        |
| WS17                          | 1.72                         | Sandy silt (TDF)          | 1.05                                        |
| WS18                          | 0.83                         | Gravelly sand (PF)        | 0.62                                        |
| WS19                          | 1.30                         | Gravelly silty sand (PF)  | 0.93                                        |



## **4 BRIDGE INVESTIGATION**

The site investigation included the ground conditions on and around the pedestrian and railway bridge situated in the south east of the Site. The bridge comprises concrete and stone construction and provides a crossing between two ornamental ponds. The bridge comprises two arches which appear to be constructed from precast concrete sections. A photographic record of the bridge investigation is included as Appendix C. Reference to 'depth' in this section relates to the depth below the surfacing of the bridge deck.

The coring of DPA, DPB, WS02 and WS02A recorded between 0.13m and 0.15m of light greyish brown concrete making up the surface of the bridge deck reinforced with 8mm rebar. In DPB, WS02 and WS02A the top surface layer comprised an additional 20-40mm of bound macadam.

DPA was progressed through the top of the southern bridge arch. Underlying the deck in this location was a section of dark grey pre-cast concrete. This hole was cored though the shoulder of two adjoining pre-cast concrete segments. Hand held core drilling was undertaken through the core hole/void/water column into the silt below where a secondary slab was encountered at 1.40m and was 0.15m thick. This slab was light grey brown in colour and reinforced with 10mm rebar. Limited sample recovery was achieved below this core to a depth of 2.3m. A further 2.6m of dynamic probe testing was undertaken to a final depth of 4.9m.

DPB and WS02A were cored outside of the arches, DPB through the northern abutment and WS02A through the central pier. The core holes encountered concrete at a depth of 0.66m and 0.67m respectively, underlying granular made ground. WS02A was terminated and moved, DPB was cored successfully however had to be terminated at 0.87m and no further penetration could be achieved and not all the core could be recovered. The recovered core from DPB comprised a greyish brown unreinforced concrete.

The windowless borehole WS02 was drilled successfully through the southern abutment to a depth of 3m. An additional 2m of dynamic probe testing undertaken to a final depth of 5m below the deck level. No concrete was encountered at the 0.66/0.67m depth as in the other cores on the bridge.

At each end of the bridge two trial pits and boreholes were excavated beside the abutments. TP01/WS01 was located to the north and TP02/WS03 to the south. The concrete deck was recorded on the southern face of TP01 with a thickness of 0.30m and on the northern face of TP02 with a thickness of 0.40m suggesting it thickens at the southern end of the bridge.



# 5 GEOTECHNICAL AND GEOCHEMICAL TESTING RESULTS

The results of the in situ and laboratory geotechnical and geochemical testing is summarised in the section below. Full results can be found on the borehole logs and laboratory certificates included as Appendices A and B.

#### **5.1 Ground Corrosive to Concrete**

The results from the pH and water soluble sulphate testing undertaken on soil samples are summarised in Table 4.

Table 4: Summary of pH and water soluble sulphate test results

| Borehole Reference<br>(Depth mbgl) | Geology                                       | рН  | Water Soluble<br>Sulphate (mg/l) |
|------------------------------------|-----------------------------------------------|-----|----------------------------------|
| TP01 (0.65-1.00)                   | Light grey mottled dark grey silty sand (TFD) | 8.2 | 166                              |
| TP03 (0.42-0.87)                   | Greyish brown gravelly sand (MG)              | 7.5 | 133                              |
| TP05 (0.66-1.00)                   | Light grey mottled orange clayey sand (PF)    | 5.7 | 13.5                             |
| TP08 (0.29-0.58)                   | Dark greyish brown gravelly silty sand (MG)   | 6.7 | 135                              |
| TP09 (0.73-1.00)                   | Brownish grey sandy peat (TFD)                | 3.9 | 504                              |
| TP11 (0.47-1.00)                   | Greyish brown gravelly sand (TFD)             | 6.5 | 89.5                             |
| TP13 (0.64-1.00)                   | Greyish brown silty sand (TFD)                | 7.1 | 3.56                             |
| TP14 (0.60-0.94)                   | Dark grey mottled dark brown sand peat (TFD)  | 6.3 | 46                               |

## **5.2 Standard Penetration Testing**

The results from the insitu standard penetration testing undertaken during drilling is summarised in Table 5: Summary of standard penetration test results. The results of the individual tests are shown on the exploratory logs in Appendix A and graphically represented in Figure 4.

Table 5: Summary of standard penetration test results

| Depth  | Tidal Flat Deposits              | Poole Formation |  |  |  |
|--------|----------------------------------|-----------------|--|--|--|
| (mbgl) | SPT[N] Range (Number of results) |                 |  |  |  |
| 1.00   | 0-31 (15)                        | 9-26 (3)        |  |  |  |
| 2.00   | 14 (1)                           | 0-38 (15)       |  |  |  |
| 3.00   | n/a                              | 10-18 (4)       |  |  |  |
| 4.00   | n/a                              | 19-20 (2)       |  |  |  |



## **5.3 Dynamic Probe Testing**

Dynamic probe testing comprising Super Heavy Dynamic Probe (B) tests which were undertaken in all of the boreholes except WS05 and WS14. Six of the DPSHs commenced at 2.0mbgl and ten commenced at 3.0mbgl and were generally tested to a further 2m depth. The results of the testing varied between 0 to 50 blows per 100mm of penetration.

The results of the testing are shown on the borehole logs presented in Appendix A.



## **6 WASTE SOIL CLASSIFICATION**

The following summarises the results of the soil chemical analysis, solely in relation to classification of waste soil. The results of the soil geochemical testing are included at Appendix B.

#### 6.1 Classification of Waste

Soil samples were tested to classify soil which may be required to remove from the Site as waste. To determine what type of landfill the soil can be disposed of there are two steps involved.

- 1) Testing of the solid fraction to determine if the sample has hazardous properties, enabling a waste code to be associated with the soil in accordance with Technical Guidance WM3. For waste soils there are two entries:
  - ▶ 17 05 03 soil and stones containing hazardous substances
  - ▶ 17 05 04 soil and stones other than those mentioned in 17 05 03
- 2) Preparation and testing of a leachate and solid component for comparison against published Waste Acceptance Criteria (WAC) to determine where the material can be disposed of in accordance with The Landfill Directive<sup>1</sup>. The soil must be classified as one of the following, or be subjected to further treatment:
  - A landfill for hazardous waste
  - A landfill for non-hazardous waste; or
  - A landfill for inert waste

## 6.2 Total Solids Testing

The results of the soil chemical analysis (total concentrations) were entered into waste soil characterisation assessment software (CAT Waste) in order to determine whether each sample has non-hazardous or hazardous properties. A summary of the recommended European Waste Catalogue code for each of the samples analysed is summarised in Table 6. The output from the CAT Waste software is included in Appendix D.

<sup>&</sup>lt;sup>1</sup> Department for Environment Food and Rural Affairs (2010). *Environmental Permitting Guidance The Landfill Directive*. Version 3.1.



Table 6: Summary of Hazardous / Non-Hazardous Waste Assessment

| Sample Reference  | Geology<br>(Principal Constituent) | Hazardous Substances | European Waste<br>Catalogue Code |
|-------------------|------------------------------------|----------------------|----------------------------------|
| TP01 (0.23-0.42m) | Made Ground (Gravel)               | n/a                  | 17 05 04                         |
| TP02 (0.21-0.63m) | Made Ground (Gravel)               | Unknown Hydrocarbon  | 17 05 03                         |
| TP05 (0.00-0.66m) | Made Ground (Sand)                 | n/a                  | 17 05 04                         |
| TP07(0.08-0.32m)  | Made Ground (Sand)                 | n/a                  | 17 05 04                         |
| TP07 (0.47-0.74m) | Tidal Flat Deposits (Peat)         | n/a                  | 17 05 04                         |
| TP09 (0.00-0.39m) | Topsoil (Sand)                     | n/a                  | 17 05 04                         |
| TP11 (0.00-0.21m) | Topsoil (Silt)                     | n/a                  | 17 05 04                         |
| TP13 (0.00-0.64m) | Made Ground (Sand)                 | n/a                  | 17 05 04                         |
| TP14 (0.15-0.60m) | Made Ground (Gravel)               | n/a                  | 17 05 04                         |

## **6.3 Waste Acceptance Criteria Testing**

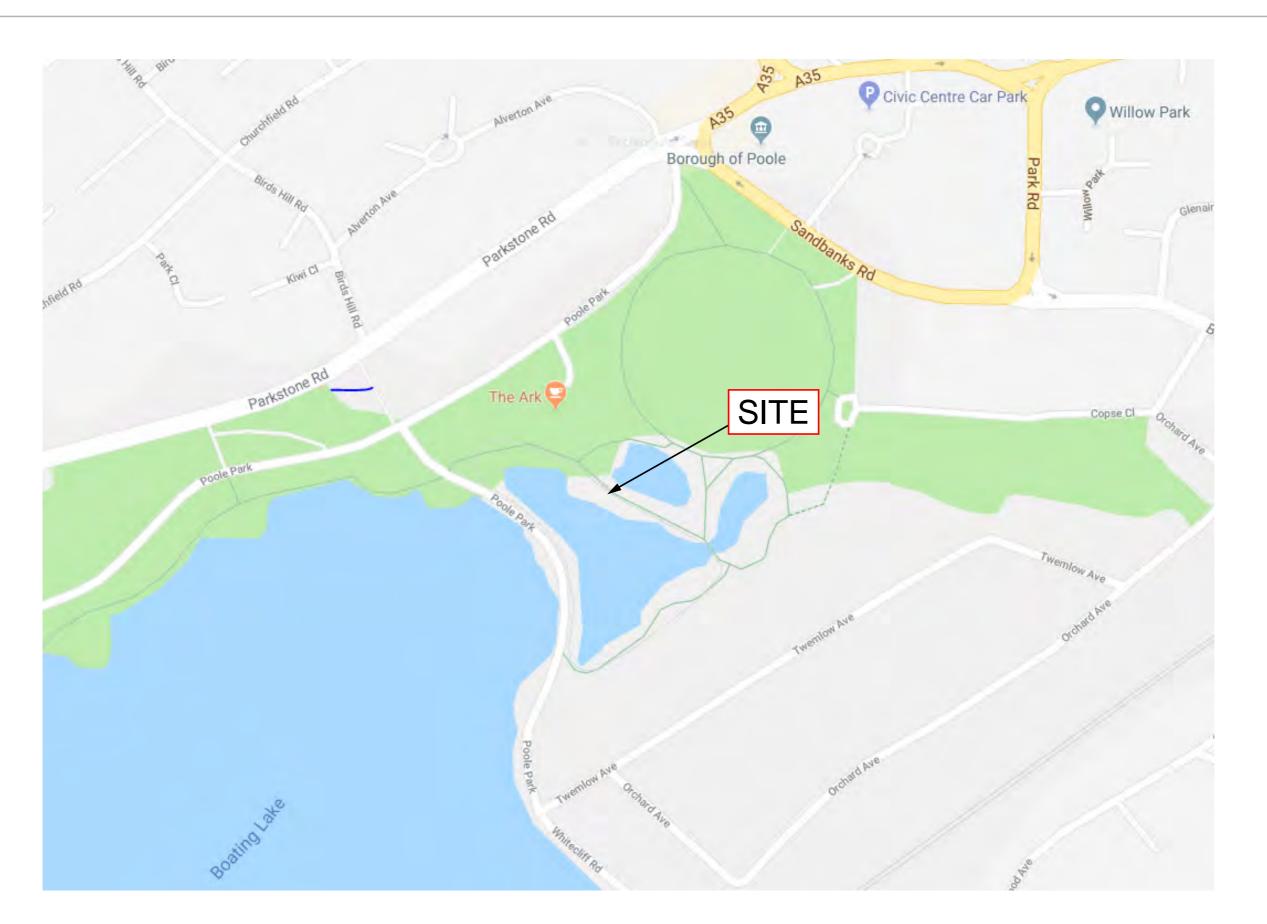

Considering the materials waste code the results of the WAC testing have then been compared to landfill waste acceptance criteria. Table 7 below summarises the type of waste management facility which may be able to receive the soil represented by each sample.

Table 7: Summary of Waste Classification

| Sample Reference  | Geology<br>(Principal Constituent) | Landfill Waste Acceptance<br>Criteria Specification –<br>Exceedances | Disposal Facility                |
|-------------------|------------------------------------|----------------------------------------------------------------------|----------------------------------|
| TP01 (0.23-0.42m) | Made Ground (Gravel)               | None                                                                 | Inert Waste                      |
| TP02 (0.21-0.63m) | Made Ground (Gravel)               | Mineral Oil(C10-C40)                                                 | Stable Non-Reactive<br>Hazardous |
| TP05 (0.00-0.66m) | Made Ground (Sand)                 | PAHs                                                                 | Non-Hazardous                    |
| TP07 (0.08-0.32m) | Made Ground (Sand)                 | None                                                                 | Inert Waste                      |
| TP07 (0.47-0.74m) | Tidal Flat Deposits (Peat)         | Total Organic Carbon,<br>Selenium, Sulphate                          | Non-Hazardous                    |
| TP09 (0.00-0.39m) | Topsoil (Sand)                     | None                                                                 | Inert Waste                      |
| TP11 (0.00-0.21m) | Topsoil (Silt)                     | Total Organic Carbon                                                 | Non-Hazardous                    |
| TP13 (0.00-0.64m) | Made Ground (Sand)                 | None                                                                 | Inert Waste                      |
| TP14 (0.15-0.60m) | Made Ground (Gravel)               | Total Organic Carbon                                                 | Non-Hazardous                    |



# Figure 1 – Site Location Plan



Notes:

Key:



## DO NOT SCALE

Drawing:

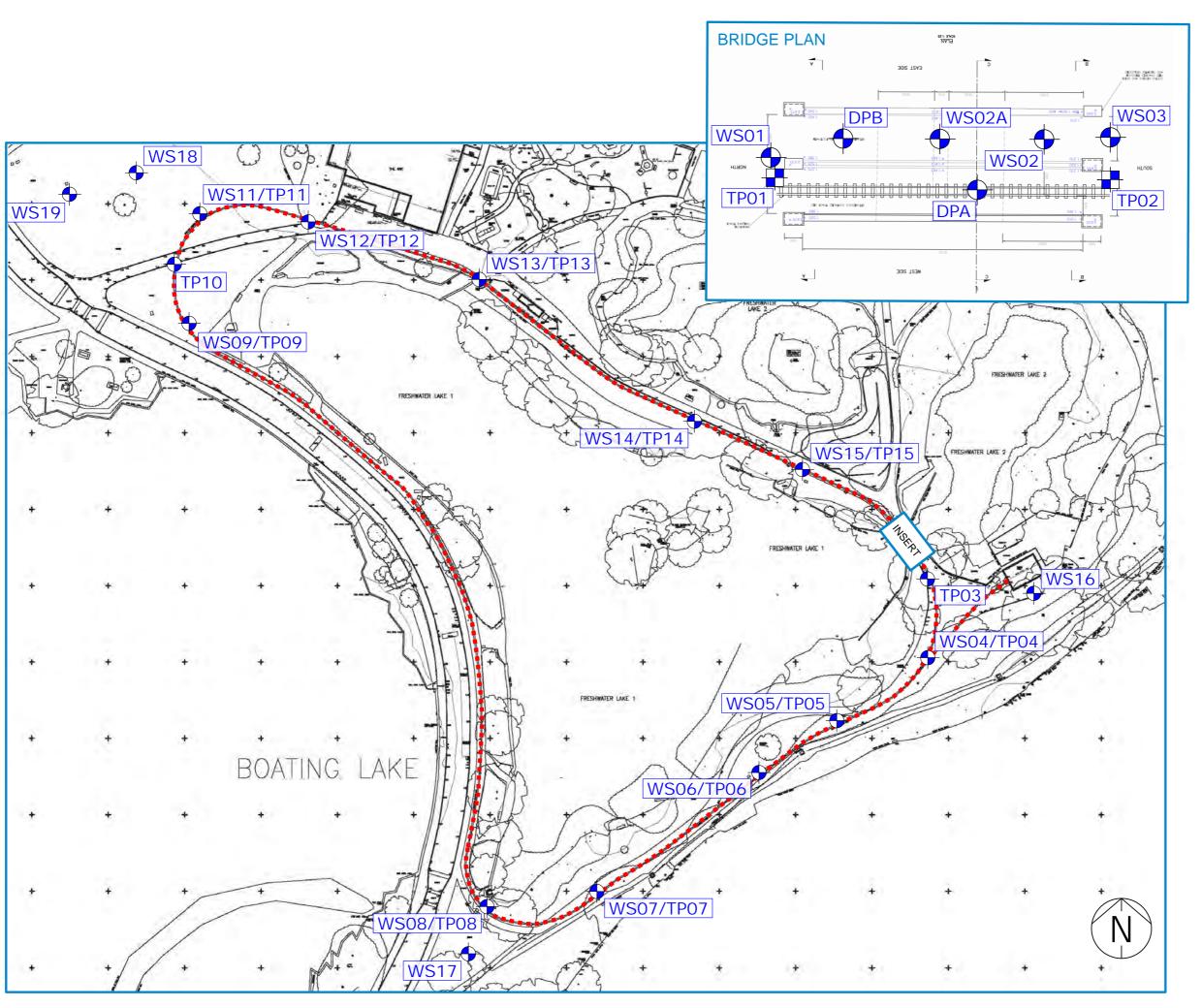
Site Location Plan

Client:

Borough of Poole

Project: Project No:
Poole Park Minature Railway 18-96795
Whitecliff Road Figure No:
Poole 1
BH15 2SF Revision:

Drawn By: Date:


DR 2.11.18

Checked By: Date: 2.11.18



ACS Testing Ltd
Unit 14 Blackhill Road West
Holton Heath Trading Park
Poole, BH16 6LE
T: 01202 622858 | F: 01202 625045
E: geo@acstesting.co.uk | W: acstesting.co.uk
@ ACS Testing Ltd

# Figure 2 – Exploratory Hole Location Plan



#### Notes:

Exploratory hole locations are approximate and have not been surveyed

#### DO NOT SCALE

Key:



- Exploratory Hole Location

- Miniature Railway

Drawing:

Exploratory Hole Location Plan

Client:

Borough of Poole

Project:

Poole Park Miniature Railway
Whitecliff Road
Poole
BH15 2SF

Revision: 02 (14/11/18)

Project No:

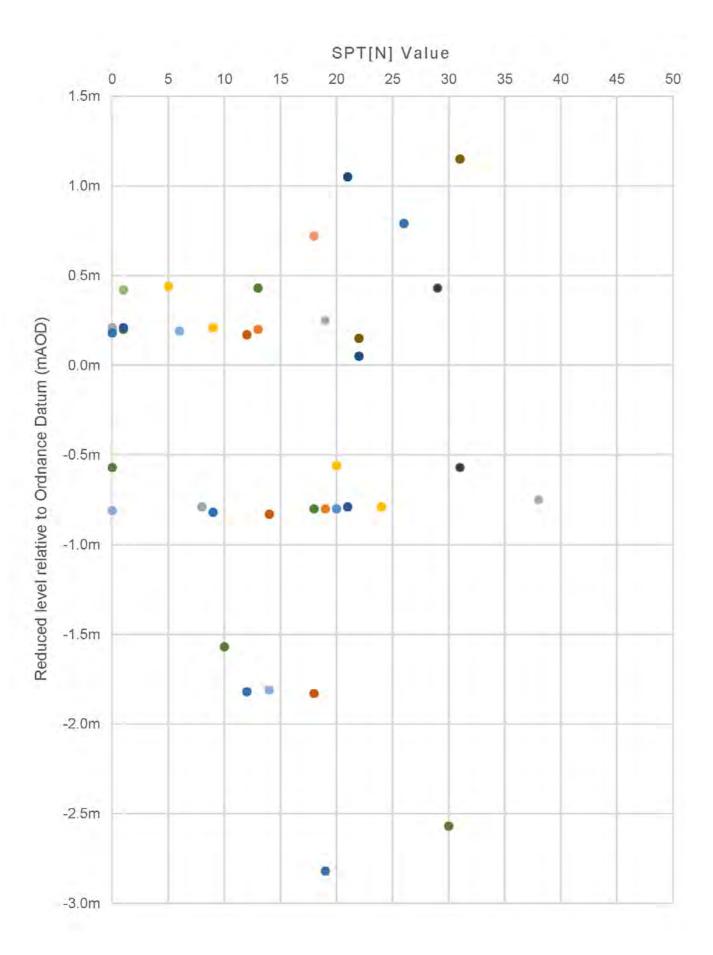
18-96795

Figure No:

02

 Drawn By:
 Date:

 AJE
 11/10/18


Checked By: Date: BG 11/10/18



ACS Testing Ltd
Unit 14 Blackhill Road West
Holton Heath Trading Park
Poole, BH16 6LE
T: 01202 622858 | F: 01202 625045
E: geo@acstesting.co.uk | W: acstesting.co.uk
@ ACS Testing Ltd

# Figure 3 – Standard Penetration Results vs Depth

Notes:



| Key:                   |                        |
|------------------------|------------------------|
| ● WS01                 | ● WS11                 |
| ■ WS02                 | • WS12                 |
| ■ WS03                 | • WS13                 |
| <ul><li>WS04</li></ul> | ■ WS14                 |
| • WS05                 | <ul><li>WS15</li></ul> |
| • WS06                 | WS16                   |
| • WS07                 | <ul><li>WS17</li></ul> |
| • WS08                 | • WS18                 |
| • WS09                 | <ul><li>WS19</li></ul> |
|                        |                        |

Drawing: Standard Penetration Results vs Depth

Client:

Borough of Poole

Project: Poole Park Miniature Railway 18-96795 Whitecliff Road Poole BH15 2SF

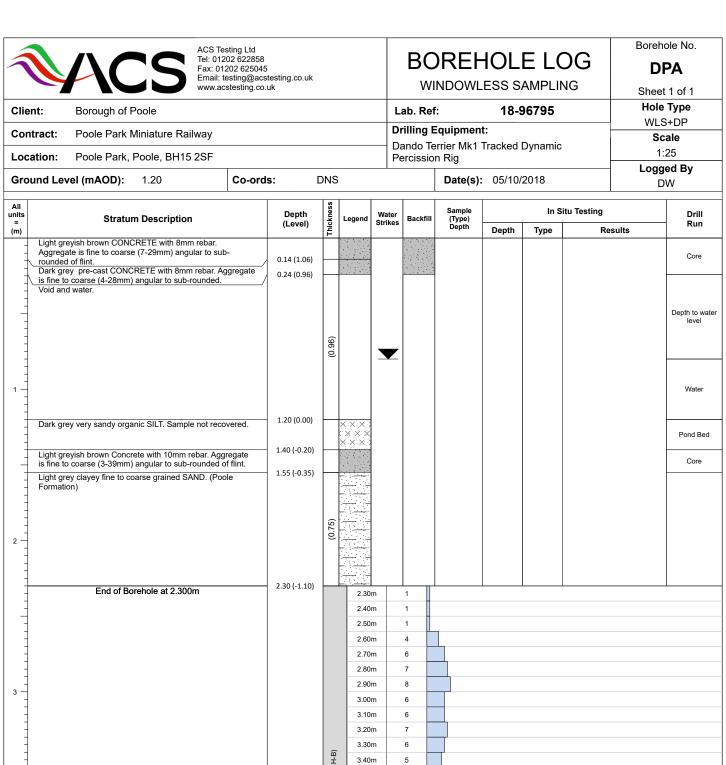
Date: Drawn By: AJE 14/11/18 Date:

Project No:

Figure No:

Revision:

03


Checked By: 14/11/18



ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole, BH16 6LE T: 01202 622858 | F: 01202 625045 E: geo@acstesting.co.uk | W: acstesting.co.uk © ACS Testing Ltd Poole Park Miniature Railway – Borough of Poole Factual Report

# **APPENDIX A**

# **Exploratory Hole Logs**



| End of Borehole at 2.300m                  | 2.30 (-1.10) | (3.7.6) Dynamic Probe (DPSH-B) | 2.30m<br>2.40m<br>2.50m<br>2.60m<br>2.70m<br>2.80m<br>3.00m<br>3.10m<br>3.20m<br>3.30m<br>3.40m<br>3.50m<br>3.60m<br>3.70m<br>3.80m<br>4.00m<br>4.10m<br>4.20m<br>4.30m<br>4.20m<br>4.30m<br>4.50m | 1<br>1<br>1<br>1<br>4<br>6<br>7<br>8<br>6<br>6<br>6<br>7<br>6<br>5<br>3<br>4<br>2<br>2<br>2<br>5<br>6<br>6<br>7<br>7<br>6<br>6<br>7<br>7<br>6<br>6<br>7<br>7<br>6<br>6<br>6<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 |             |
|--------------------------------------------|--------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5 —                                        |              |                                | Depth (m)                                                                                                                                                                                          | Blows                                                                                                                                                                                                                                                                                                                        | Blows/100mm |
| General Remarks: Groundwater Observations: |              |                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                              |             |

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.
 Densities of granular material, if identified, based on N-Values derived from in situ SPT testing.
 Chalk descriptions, if identified, are in accordance with CIRIA C574

| Groundwater Observation |        |        |  |  |
|-------------------------|--------|--------|--|--|
| Data                    | Ctriko | Cooing |  |  |

| Date       | Strike | Casing | Time Elapsed | Standing | Remarks                                 |
|------------|--------|--------|--------------|----------|-----------------------------------------|
| 05-10-2018 | 0.80m  |        | 0mins        | 0.00m    | Depth to water from bridge deck = 0.80m |



ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

Co-ords:

# **BOREHOLE LOG**

## WINDOWLESS SAMPLING

**DPB** 

Borehole No.

Sheet 1 of 1

Client: Borough of Poole Lab. Ref: 18-96795

Hole Type WLS

Contract: Poole Park Miniature Railway

Scale 1:25

Location: Poole Park, Poole, BH15 2SF

Technical Notes (where applicable):
Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Densities of granular material based on in situ SPT N-values. Chall describtions in accordance with CRIAL CST4'

Ground Level (mAOD): 1.20

Date(s): 05/10/2018 Not Surveyed

Drilling Equipment:

Logged By

| ll<br>its     | Ot                                                                                                                 | Depth       | ness      |         | Water   | D        | Sample                    |         |        | In S    | Situ Testing |         | Drill    |
|---------------|--------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|---------|----------|---------------------------|---------|--------|---------|--------------|---------|----------|
| n)            | Stratum Description                                                                                                | (Level)     | Thickness | Legend  | Strikes | Backfill | Sample<br>(Type)<br>Depth | Dep     | th     | Туре    | F            | Results | Run      |
| $\overline{}$ | BOUND MACADAM.  Light growish brown CONCRETE and 8mm rehar                                                         | 0.04 (1.16) | Ė         | #       |         |          |                           |         |        |         |              |         | Core     |
| 1             | Light greyish brown CONCRETE and 8mm rebar. Aggregate is fine to coarse (2-38mm) angular to sub-                   | 0.17 (1.03) |           | ******* |         |          |                           |         |        |         |              |         |          |
| 4             | rounded of flint.  MADE GROUND. Light brown angular to sub-angular COBBLES and BOULDERS of limestone and concrete. |             |           |         |         |          |                           |         |        |         |              |         |          |
| 4             | COBBLES and BOULDERS of limestone and concrete.                                                                    |             | (0.49)    |         |         |          |                           |         |        |         |              |         | Hardcore |
| 4             |                                                                                                                    |             | 0)        |         |         |          |                           |         |        |         |              |         |          |
| 3             |                                                                                                                    | 0.55 (0.54) |           |         |         |          |                           |         |        |         |              |         |          |
| -             | Light greyish brown CONCRETE. Aggregate is fine to coarse (2-28mm) angular to sub-rounded of flint.                | 0.66 (0.54) |           |         |         |          |                           |         |        |         |              |         | Core     |
| 1             |                                                                                                                    | 0.87 (0.33) |           |         |         |          |                           |         |        |         |              |         | Core     |
| 1             | End of Borehole at 0.870m                                                                                          | 0.87 (0.33) |           |         |         |          |                           |         |        |         |              |         |          |
| -             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 3             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| ╡             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| =             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 7             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| ]             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| -             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| -             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 3             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| -             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| ]             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| _             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| ]             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| =             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 7             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| }             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| =             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 3             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 3             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| =             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| #             |                                                                                                                    |             |           |         |         |          |                           |         |        |         |              |         |          |
| 1             | arke:                                                                                                              | 1           |           |         | Gra     | durete   | Observ                    | otion   |        |         |              |         |          |
|               | arks: terminated at 0.87mbgl due to concrete obstruction.                                                          |             |           | H       | Date    | Str      | Observ                    | Casing  |        | Elapsed | Standing     | Rema    | orke     |
| 9             | at old mag. and to controlle obolition.                                                                            |             |           | L       | Date    | Jour     | IKC                       | Jasiily | inne E | _iapaeu | Stariulity   | Kem     | 21 NO    |



Ground Level (mAOD): 1.20

Borough of Poole

Client:

Contract:

Location:

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

Co-ords:

Not Surveyed

# **BOREHOLE LOG**

## WINDOWLESS SAMPLING

18-96795

Borehole No. WS02A

Sheet 1 of 1

Hole Type

WLS

Scale 1:25

Drilling Equipment: Poole Park Miniature Railway Poole Park, Poole, BH15 2SF

Technical Notes (where applicable):
Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Densities of granular material based on in situ SPT N-values. Chall describtions in accordance with CRIAL CST4'

Dando Terrier Mk1 Tracked Dynamic Percussion Rig

Date(s): 02/10/2018

Lab. Ref:

Logged By DW

| GIU      | uliu Level (IIIAOD). 1.20                                                                                                                        | Co-orus. | 1101 3    | uive      | eyeu   |                  |           | Date(S)                   | . 02/1 | 0/2010      |              |         | )W                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|--------|------------------|-----------|---------------------------|--------|-------------|--------------|---------|---------------------|
| All      | Stratum Description                                                                                                                              |          | Depth     | Thickness | Legend | Water<br>Strikes | Backfill  | Sample<br>(Type)<br>Depth |        | In          | Situ Testing | I       | Drill               |
| =<br>(m) | Guatam 2000 ipilon                                                                                                                               | (        | Level)    | Thic      |        | Strikes          |           | Depth                     | Depti  | n Type      |              | Results | Run                 |
| -        | BOUND MACADAM. CONCRETE.                                                                                                                         | 0.0      | 04 (1.16) |           | ****   |                  |           |                           |        |             |              |         | Core                |
|          |                                                                                                                                                  | 0.1      | 17 (1.03) |           | ×××××  |                  | 10113     |                           |        |             |              |         |                     |
| 7        | MADE GROUND. Light greyish brown slightly sand cobbly fine to coarse sub-angular to sub-rounded GRAVEL of flint and concrete. Cobbles comprise s | ay       |           |           | ****** |                  |           |                           |        |             |              |         |                     |
| 7        | GRAVEL of flint and concrete. Cobbles comprise s<br>angular to sub-rounded concrete.                                                             | ub-      |           | ()        | ****   |                  |           |                           |        |             |              |         | (117mm d<br>Rec=100 |
| 7        | angular to sub rounded controlete.                                                                                                               |          |           | (0.50)    |        |                  |           |                           |        |             |              |         | 1100-100            |
| 7        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 3        | End of Borehole at 0.670m                                                                                                                        | 0.6      | 57 (0.53) |           |        |                  | • : : : • |                           |        |             |              |         |                     |
| 1        | End of Borenole at 0.070m                                                                                                                        |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 1        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 1 -      |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| . 4      |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| =        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| =        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| ヸ        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 2 –      |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 7        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 7        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 3        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 3        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| -        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| =        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| -        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| =        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| -        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 3 —      |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 1        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 1        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 7        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 7        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 7        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 3        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| <u> </u> |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| -        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 4        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 1        |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| 5 🕇      |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |
| em       | arks:                                                                                                                                            | l        |           |           |        | Groun            | dwate     | Observat                  | ions:  |             |              |         |                     |
| mpl      | ing terminated at 0.67mbgl due to concrete sub-slab.                                                                                             |          |           |           |        | Date             | Str       | ike Ca                    | sing T | ime Elapsed | Standing     | Rem     | arks                |
|          |                                                                                                                                                  |          |           |           |        |                  |           |                           |        |             |              |         |                     |



ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

# **BOREHOLE LOG**

## WINDOWLESS SAMPLING

Borehole No. WS02

**WS02**Sheet 1 of 1

Client: Borough of Poole

Lab. Ref: 18-96795

**Drilling Equipment:** 

**Hole Type** WLS+DP

Contract: Poole

Ground Level (mAOD):

Poole Park Miniature Railway

Dando Terrier Mk1 Tracked Dynamic Percussion Rig

**Scale** 1:25

**Location:** Poole Park, Poole, BH15 2SF

Co-ords: DNS

**Date(s):** 02/10/2018

**Logged By** DW

|                               | ana 2000 (mr.02).                                                                                                                                                                                                                                                        |                  | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          | - Date(6)                 | . 02/10 |                     |                   |               | VV                    |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|---------------------------|---------|---------------------|-------------------|---------------|-----------------------|
| All<br>units<br>=<br>(m)      | Stratum Description                                                                                                                                                                                                                                                      | Depth<br>(Level) | Thickness              | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water<br>Strikes | Backfill | Sample<br>(Type)<br>Depth | Depth   | In S                | Situ Testing      | Results       | Drill<br>Run          |
| \···/                         | BOUND MACADAM.                                                                                                                                                                                                                                                           | 0.02 (1.18)      | =                      | DALD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |                           | Sopui   | .,,,,,              | 1                 |               |                       |
| -                             | CONCRETE.                                                                                                                                                                                                                                                                | 0.16 (1.03)      | L                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | VXXV     |                           |         |                     |                   |               | Core                  |
|                               | MADE GROUND. Light greyish brown slightly sandy cobbly fine to coarse sub-angular to sub-rounded GRAVEL of flint and concrete. Cobbles comprise sub-angular to sub-rounded flint and concrete.                                                                           | 0.16 (1.05)      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |                           |         |                     |                   |               |                       |
|                               |                                                                                                                                                                                                                                                                          |                  | (1.00)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                |          |                           | 1.00    | SPT(C)              | N=12              | (1,5/6,4,2,1) | Hand Dug Pit          |
| ' -<br>-<br>-<br>-            | Dark greyish brown slightly sandy pseudo-fibrous PEAT. Moderate organic odour. (Tidal Flat Deposits)                                                                                                                                                                     | 1.16 (0.04)      |                        | alka alka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |                           | 1.00    | 351(0)              | N-13              | (1,5/0,4,2,1) |                       |
|                               |                                                                                                                                                                                                                                                                          |                  | (0.84)                 | alle alle si a |                  |          |                           |         |                     |                   |               | (87mm dia)<br>Rec=61% |
| 2 -                           | Durain a fire CAND (Drillarle description)                                                                                                                                                                                                                               | 2.00 (-0.80)     |                        | مالۍ مالۍ<br>ساد ساد ساد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          | \$                        | 2.00    | SPT(C)              | N=19              | (2,4/3,4,5,7) |                       |
| 3                             | Running fine SAND. (Driller's description).  End of Borehole at 3.000m                                                                                                                                                                                                   | 3.00 (-1.80)     | (1.00)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |                           |         |                     |                   |               | (87mm dia)<br>Rec=0%  |
| =                             | End of Botonoic at 0.000m                                                                                                                                                                                                                                                |                  |                        | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 1        |                           |         |                     |                   |               |                       |
| _                             |                                                                                                                                                                                                                                                                          |                  |                        | 3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 1        |                           |         |                     |                   |               |                       |
| 1                             |                                                                                                                                                                                                                                                                          |                  |                        | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 1        |                           |         |                     |                   |               |                       |
| =                             |                                                                                                                                                                                                                                                                          |                  |                        | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 0        |                           |         |                     |                   |               |                       |
|                               |                                                                                                                                                                                                                                                                          |                  |                        | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 3        |                           |         |                     |                   |               |                       |
| =                             |                                                                                                                                                                                                                                                                          |                  |                        | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 5        | Ц                         |         |                     |                   |               |                       |
| =                             |                                                                                                                                                                                                                                                                          |                  |                        | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 6        |                           |         |                     |                   |               |                       |
| -                             |                                                                                                                                                                                                                                                                          |                  | ₽<br>19                | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 4        |                           |         |                     |                   |               |                       |
| =                             |                                                                                                                                                                                                                                                                          |                  | l sac                  | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 4        |                           |         |                     |                   |               |                       |
| 4 —                           |                                                                                                                                                                                                                                                                          |                  | ) equ                  | 3.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 6        |                           |         |                     |                   |               |                       |
|                               |                                                                                                                                                                                                                                                                          |                  | Dynamic Probe (DPSH-B) | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 3        |                           |         |                     |                   |               |                       |
| -                             |                                                                                                                                                                                                                                                                          |                  | nami                   | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 5        |                           |         |                     |                   |               |                       |
| =                             |                                                                                                                                                                                                                                                                          |                  | l Q                    | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 8        |                           |         |                     |                   |               |                       |
| _                             |                                                                                                                                                                                                                                                                          |                  |                        | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 11       |                           |         |                     |                   |               |                       |
| _                             |                                                                                                                                                                                                                                                                          |                  |                        | 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 9        |                           |         |                     |                   |               |                       |
| =                             |                                                                                                                                                                                                                                                                          |                  |                        | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 7        |                           |         |                     |                   |               |                       |
| =                             |                                                                                                                                                                                                                                                                          |                  |                        | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 8        |                           |         |                     |                   |               |                       |
|                               |                                                                                                                                                                                                                                                                          |                  |                        | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 8        |                           |         |                     |                   |               |                       |
| _                             |                                                                                                                                                                                                                                                                          |                  |                        | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 5        |                           |         |                     |                   |               |                       |
| 5 —                           |                                                                                                                                                                                                                                                                          |                  |                        | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )m               | 7        |                           |         |                     |                   |               |                       |
|                               |                                                                                                                                                                                                                                                                          |                  |                        | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (m) E            | lows     |                           |         | ВІ                  | ows/100mm         |               |                       |
|                               | General Remarks:                                                                                                                                                                                                                                                         |                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grour            | ndwater  | Observati                 | ons:    |                     |                   |               |                       |
| Densiti<br>Chalk o<br>2. No s | sistency of fine grained soil assessed by hand worked tests in access of granular material, if identified, based on N-Values derived fro descriptions, if identified, are in accordance with CIRIA C574 nample recovery between 2.00-3.00m due to saturated material. Dy | m in situ SPT    | testin                 | g. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date<br>02-10-20 |          |                           | -       | e Elapsed<br>20mins | Standing<br>1.00m | Rem           | arks                  |
| ınderta                       | aken from 3.00mbgl.                                                                                                                                                                                                                                                      |                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |                           |         |                     |                   |               |                       |



macadam.

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

## TRIAL PIT LOG

Trial Pit No.

**TP01**Sheet 1 of 1

Client Borough of Poole

Site Poole Park Miniature Railway

Location Poole Park, Poole, BH15 2SF

Depth (m):
1.00

Dimensions (m):

Lab Ref. 18-96795
Plant Used:

Groundwater: Not encountered

2t Tracked Mini Excavator

Hole Type
TP
Scale

1:10

Ground Level (mAOD): 1.20 Co-ords: DNS Date(s) 01/10/2018 Logged By

| Grou        | ind Level (mAOD): 1.20                                                                                                                                      | Co-oras:                                   | DNS                |                         |                                          | Date(s)                                | 01/10/2         | 010   |         | DW        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|-------------------------|------------------------------------------|----------------------------------------|-----------------|-------|---------|-----------|
| All units   |                                                                                                                                                             |                                            | Depth              | ess                     |                                          | Water                                  | Sample          |       | Testing |           |
| (m)         | Stratum Description                                                                                                                                         |                                            | (Level)            | Thickness               | Legend                                   | Strikes                                | (Type)<br>Depth | Depth | Туре    | Results   |
| -           | BOUND MACADAM.                                                                                                                                              |                                            |                    | F                       |                                          |                                        |                 | 20pm  | .,,,,,  | T.COG.IIC |
| -           | MADE GROUND. Light brown ver to coarse SAND. Gravel is fine to angular to sub-rounded of flint and                                                          | coarse sub-                                | 0.12 (1.08)        |                         |                                          |                                        | 0.12 (D) 0.23   |       |         |           |
| -           | MADE GROUND. Greyish brown cobbly fine to coarse sub-angular rounded GRAVEL of flint, brick and Clasts comprise sub-angular to sufflint brick and concrete. | to sub-<br>d concrete.                     | 0.23 (0.97)        |                         |                                          |                                        | (B)             |       |         |           |
| -<br>-<br>- | Dark grey mottled dark brown sligl<br>pseudo-fibrous PEAT. Moderate o<br>noted. (Tidal Flat Deposits)                                                       | ntly sandy<br>rganic odour                 | - 0.42 (0.78)      |                         | e alte alte alte alte alte alte alte alt |                                        | 0.42<br>0.42    |       |         |           |
| -           | Light grey mottled dark grey silty f<br>SAND. (Tidal Flat Deposits)                                                                                         | ine to coarse                              | - 0.65 (0.55)      |                         | **************************************   | ************************************** | 0.65            |       |         |           |
| -<br>-<br>- |                                                                                                                                                             |                                            |                    | (0.35)                  |                                          |                                        | (D)             |       |         |           |
| 1           | End of Trial Pit at 1.000r                                                                                                                                  | n                                          | - 1.00 (0.20)      |                         | X-1-17, - X-1                            | <u> </u>                               | 1.00            |       |         |           |
| -<br>-<br>- |                                                                                                                                                             |                                            |                    |                         |                                          |                                        |                 |       |         |           |
| -           |                                                                                                                                                             |                                            |                    |                         |                                          |                                        |                 |       |         |           |
| -           |                                                                                                                                                             |                                            |                    |                         |                                          |                                        |                 |       |         |           |
| 2 Remark    | Base of concrete bridge deck measured a<br>ks: beside narrow gauge railway. The track is<br>macadam.                                                        | t 0.30mbgl on southe<br>bedded on granular | rn face of trial p | oit. Trial<br>nd partia | pit was excav                            |                                        | it Stability: S | table |         |           |



ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

DNS

## TRIAL PIT LOG

Trial Pit No.

**TP02** 

Sheet 1 of 1 **Hole Type** Lab Ref. Client Borough of Poole Dimensions (m): 18-96795 Depth TP (m): Plant Used: 0.70 Site Poole Park Miniature Railway Scale 1.00 2t Tracked Mini Excavator 1:10 Location Poole Park, Poole, BH15 2SF Logged By

Date(s) 1.21 01/10/2018 Ground Level (mAOD): Co-ords: DW Testing Depth (Level) Water Strikes Stratum Description (m) Depth Туре Results BOUND MACADAM. 0.09 (1.12) MADE GROUND. Light brown very gravelly fine to coarse SAND, Gravel is fine to coarse sub-(D) angular to sub-rounded of flint and concrete. Frequent rootlets and rare sub-angular to sub-0.21 (1.00) rounded flint and concrete cobbles. MADE GROUND. Light greyish brown slightly sandy cobbly fine to coarse sub-angular to subrounded GRAVEL of flint, brick and concrete. Cobbles comprise sub-angular to sub-rounded flint, brick and concrete. (0.42)(B) 0.63 (0.58) Dark grey mottled dark brown slightly sandy pseudo-fibrous PEAT. Moderate organic odour. (Tidal Flat Deposits) (0.37)(D) e alla alla di alla alla alla e alla alla di alla alla alla e alla alla di ale ale ale 1.00 (0.21) End of Trial Pit at 1.000m

Base of concrete bridge deck measured at 0.40mbgl. on northern face of trial pit. Trial pit was excavated beside narrow gauge railway. The track is bedded into granular made ground and partially covered with macadam.

Pit Stability:

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Seepage from western face of trial pit. Slow flow rate.



ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

Co-ords:

# **BOREHOLE LOG**

WINDOWLESS SAMPLING

Borehole No. **WS01** 

Sheet 1 of 1

Client: Borough of Poole

Ground Level (mAOD):

Lab. Ref: 18-96795

**Drilling Equipment:** 

Hole Type WLS+DP

Contract:

Poole Park Miniature Railway

Dando Terrier Mk1 Tracked Dynamic

Scale 1:25

Poole Park, Poole, BH15 2SF Location:

Percussion Rig Date(s): 02/10/2018

DNS

Logged By DW

|                   |                                                                                                                                                                                                                                                                                             |                                            | _                      |                                                                                                  |                                       |                                                             | - Date(0)                 |       |                     |                   |               | VV                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|---------------------------|-------|---------------------|-------------------|---------------|------------------------|
| All<br>units<br>= | Stratum Description                                                                                                                                                                                                                                                                         | Depth<br>(Level)                           | Thickness              | Legend                                                                                           | Water<br>Strikes                      | Backfill                                                    | Sample<br>(Type)<br>Depth |       | ,                   | Situ Testing      |               | Drill<br>Run           |
| (m)               | •                                                                                                                                                                                                                                                                                           | (26vei)                                    | Thị                    |                                                                                                  | va                                    |                                                             | Depth                     | Depth | Туре                | R                 | esults        | Kuii                   |
|                   | Refer to TP01 Log.                                                                                                                                                                                                                                                                          |                                            | (1.00)                 |                                                                                                  |                                       |                                                             |                           |       |                     |                   |               | TP01                   |
| 1                 | Light grey mottled dark grey silty fine to coarse SAND.  (Tidal Flat Deposits)  Very soft grey peaty CLAY. Weak organic odour. (Tidal Flat Deposits)  Dark greyish brown slightly sandy pseudo-fibrous PEAT.                                                                                | 1.00 (0.20)<br>1.04 (0.16)<br>1.39 (-0.19) | (0.35)                 | \$ 2016 2<br>216 - 216<br>216 - 216<br>216 - 216<br>216 - 216                                    |                                       |                                                             |                           | 1.00  | SPT(C)              | N=0 (             | 0,0/0,0,0,0)  |                        |
| -                 | Moderate organic odour. (Tidal Flat Deposits)                                                                                                                                                                                                                                               |                                            | (0.61)                 | alle alle s alle al s |                                       |                                                             |                           |       |                     |                   |               | (87mm dia)<br>Rec=100% |
| 2                 | Medium dense light grey fine to coarse SAND. (Poole Formation)                                                                                                                                                                                                                              | 2.00 (-0.80)                               | (0.38)                 |                                                                                                  |                                       |                                                             |                           | 2.00  | SPT(C)              | N=20              | (0,1/4,5,6,5) |                        |
| -                 | Medium dense light greyish brown very gravelly fine to coarse SAND. Gravel is fine sub-angular to rounded of flint. (Poole Formation) Light grey silty fine to coarse SAND. (Poole Formation) Firm grey very sandy SILT.                                                                    | 2.49 (-1.29)                               | (0.51)                 |                                                                                                  |                                       |                                                             |                           |       |                     |                   |               | (87mm dia)<br>Rec=71%  |
| 4                 | End of Borehole at 3.000m                                                                                                                                                                                                                                                                   | 3.00 (-1.80)                               | Dynamic Probe (DPSH-B) | 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90   | m m m m m m m m m m m m m m m m m m m | 8 7 6 6 6 6 5 6 4 4 4 4 7 7 6 6 7 8 8 8 9 8 8 8 7 111 3lows |                           |       | В                   | ows/100mm         |               |                        |
|                   | General Remarks:                                                                                                                                                                                                                                                                            | I.                                         |                        |                                                                                                  |                                       |                                                             | Observati                 | ons:  |                     |                   |               |                        |
| Densit<br>Chalk   | nsistency of fine grained soil assessed by hand worked tests in acc<br>ies of granular material, if identified, based on N-Values derived fro<br>descriptions, if identified, are in accordance with CIRIA C574<br>upling terminated at 3.00mbgl due to running sands. Dynamic prob<br>bgl. | om in situ SPT t                           | estin                  | g. 0                                                                                             | Date<br>2-10-20                       |                                                             |                           | -     | e Elapsed<br>20mins | Standing<br>2.00m | Rema          | arks                   |



1.19

Co-ords:

Ground Level (mAOD):

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

## TRIAL PIT LOG

01/10/2018

Date(s)

Trial Pit No.

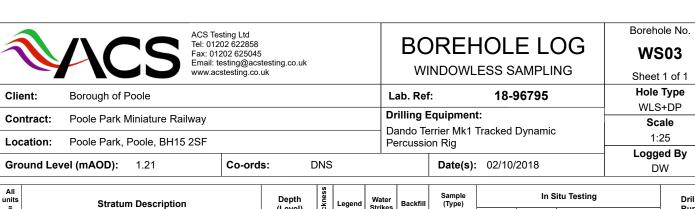
**TP03** 

|          | www                          | w.acstesting.co.uk |                 |                                       | Sheet 1 of 1 |
|----------|------------------------------|--------------------|-----------------|---------------------------------------|--------------|
| Client   | Borough of Poole             | Depth              | Dimensions (m): | <b>Lab Ref.</b> 18-96795              | Hole Type    |
| Site     | Poole Park Miniature Railway | (m):               | 0.60            | Plant Used: 2t Tracked Mini Excavator | Scale        |
| Location | Poole Park, Poole, BH15 2SF  | 1.00               | 4.0             | 2t tracked Mini Excavator             | 1:10         |
|          |                              |                    |                 |                                       | Logged By    |

DNS

DW Sample (Type) Depth Testing Depth (Level) Water Strikes Stratum Description (m) Depth Туре Results BOUND MACADAM. 0.16 (1.03) MADE GROUND. Light brown very gravelly fine to coarse grained SAND. Gravel is fine to coarse angular to sub-rounded of flint. Frequent rootlets and rare sub-angular to sub-rounded (D) flint brick and concrete cobbles. 0.40 (0.79) BOUND MACADAM. 0.42 (0.77) MADE GROUND. Greyish brown slightly gravelly silty fine to coarse grained SAND.

Gravel is fine to medium sub-angular to rounded of flint. Occasional ceramic pipe fragments. (0.45)(D) 0.87 (0.32) Dark grey mottled dark brown slightly sandy alic pseudo-fibrous PEAT. (Tidal Flat Deposits) (D) alic alic alic 1.00 (0.19) End of Trial Pit at 1.000m


Remarks: Trial pit was excavated beside narrow gauge railway. The track is bedded into macadam.

Pit Stability: Stable

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Seepage from western face of trial pit. Slow flow rate.



| 0.0          | und Level (mAOD): 1.21                                                                                                                                    | Co-ords: L                 | )NS                    |                                                            |          |                 | Date(s)            | ). UZ/I | 0/2010      |              |              | DW .                  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------|----------|-----------------|--------------------|---------|-------------|--------------|--------------|-----------------------|
| All<br>units | Otantama Barant Car                                                                                                                                       | Depth                      | ness                   | 1                                                          | Water    | Backfill        | Sample             |         | In          | Situ Testing |              | Drill                 |
| =<br>(m)     | Stratum Description                                                                                                                                       | (Level)                    | Thickness              | Legend                                                     | Strikes  | Backfill        | ll (Type)<br>Depth | Depti   | h Type      | R            | esults       | Run                   |
|              | Refer to TP02 Log.                                                                                                                                        |                            | (1.00)                 |                                                            |          |                 |                    |         |             |              |              | TP02                  |
| 2 —          | Dark brown mottled dark grey slightly sandy pseudo-PEAT. Moderate organic odour. (Tidal Flat Deposits)  Light grey fine to coarse SAND. (Poole Formation) | 1.00 (0.21)  1.29 (-0.08)  |                        | g alte, s<br>slig alte<br>g alte, s<br>slig alte<br>s slig | 1        |                 |                    | 2.00    | SPT(C)      |              | 1,2/3,2,2,1) | (87mm dia)<br>Rec=44% |
| 3            |                                                                                                                                                           | 3.00 (-1.79)               | (1.71)                 |                                                            |          |                 |                    |         |             |              |              | (87mm dia)<br>Rec=10% |
| -            | End of Borehole at 3.000m                                                                                                                                 | 3.00 ( 1.75)               |                        | 3.00                                                       |          | 0               |                    |         |             |              |              |                       |
| =            |                                                                                                                                                           |                            |                        | 3.10                                                       |          | 2               |                    |         |             |              |              |                       |
| -            |                                                                                                                                                           |                            |                        | 3.20                                                       |          | 3               |                    |         |             |              |              |                       |
| -            |                                                                                                                                                           |                            |                        | 3.40                                                       |          | 3               |                    |         |             |              |              |                       |
| -            |                                                                                                                                                           |                            |                        | 3.50                                                       | _        | 5               |                    |         |             |              |              |                       |
| =            |                                                                                                                                                           |                            |                        | 3.60                                                       | )m       | 5               |                    |         |             |              |              |                       |
| ]            |                                                                                                                                                           |                            | -FB                    | 3.70                                                       | )m       | 5               |                    |         |             |              |              |                       |
| =            |                                                                                                                                                           |                            | DPSF                   | 3.80                                                       |          | 6               |                    |         |             |              |              |                       |
| 4 -          |                                                                                                                                                           |                            | pqou                   | 3.90<br>4.00                                               |          | 5               |                    |         |             |              |              |                       |
| =            |                                                                                                                                                           |                            | Dynamic Probe (DPSH-B) | 4.10                                                       |          | 5               |                    |         |             |              |              |                       |
| =            |                                                                                                                                                           |                            | Dyne                   | 4.20                                                       |          | 6               |                    |         |             |              |              |                       |
| 3            |                                                                                                                                                           |                            |                        | 4.30                                                       | )m       | 7               |                    |         |             |              |              |                       |
|              |                                                                                                                                                           |                            |                        | 4.40                                                       |          | 7               |                    |         |             |              |              |                       |
| =            |                                                                                                                                                           |                            |                        | 4.50                                                       |          | 7               |                    |         |             |              |              |                       |
| =            |                                                                                                                                                           |                            |                        | 4.60                                                       |          | 9<br>5          |                    |         |             |              |              |                       |
|              |                                                                                                                                                           |                            |                        | 4.70                                                       |          | 25              |                    |         |             |              |              |                       |
| -            |                                                                                                                                                           |                            |                        | 4.90                                                       |          | 50              |                    |         |             |              |              |                       |
| 5 —          |                                                                                                                                                           |                            |                        |                                                            |          |                 |                    |         | _           | Jame (400:   |              |                       |
|              | General Remarks:                                                                                                                                          |                            |                        | Depth                                                      |          | Blows<br>ndwate | r Observat         | ions:   | <u>E</u>    | lows/100mm   |              |                       |
| 1. Cor       | sistency of fine grained soil assessed by hand worked                                                                                                     | tests in accordance with E | 3S59                   | 30.                                                        | Date     |                 |                    |         | ime Elapsed | Standing     | Rem          | narks                 |
| Densiti      | es of granular material, if identified, based on N-Values<br>descriptions, if identified, are in accordance with CIRIA                                    | derived from in situ SPT t | estin                  | ~                                                          | 02-10-20 |                 |                    | .00m    | 20mins      | 1.00m        | T.GII        |                       |
| 2. Sam       | pling terminated at 3.00mbgl due to running sands. Dy                                                                                                     | namic probe testing under  | taker                  | n from                                                     |          |                 |                    |         |             |              |              |                       |
| 3.00ml       | ogi.                                                                                                                                                      |                            |                        |                                                            |          |                 |                    |         |             |              |              |                       |

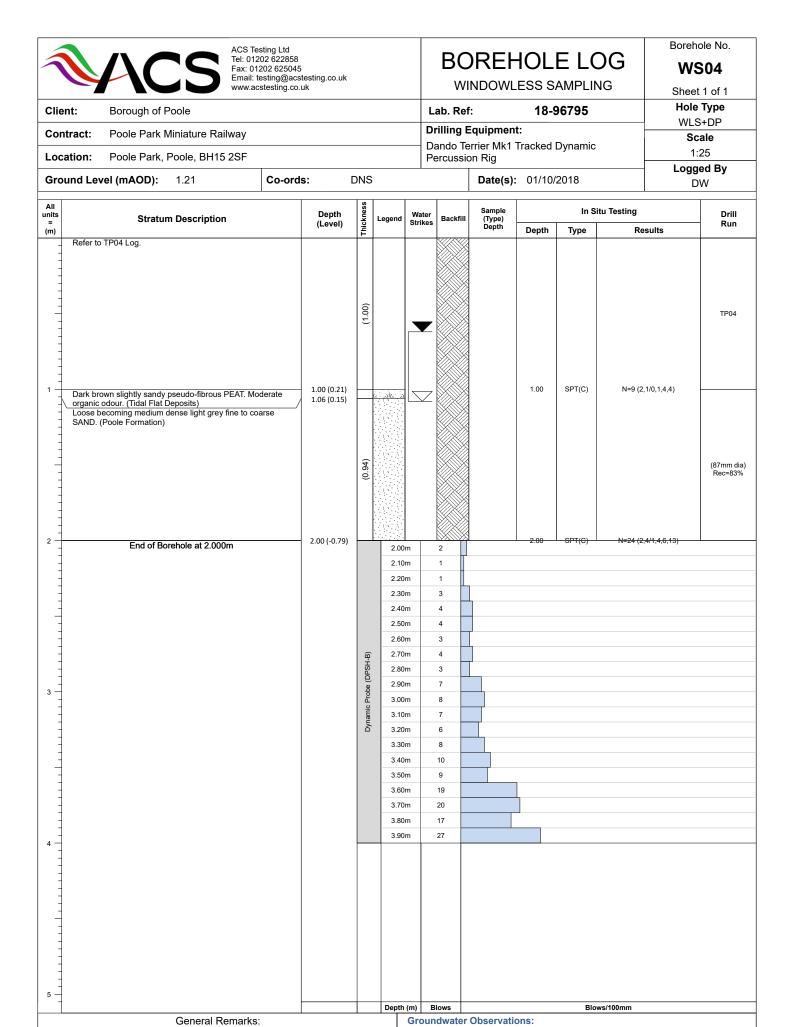


Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

## TRIAL PIT LOG


Groundwater: Not encountered.

Trial Pit No.

**TP04** 

|          | www                          | w.acstesting.co.uk |                 |                                       | Sheet 1 of 1 |
|----------|------------------------------|--------------------|-----------------|---------------------------------------|--------------|
| Client   | Borough of Poole             | Depth              | Dimensions (m): | <b>Lab Ref.</b> 18-96795              | Hole Type TP |
| Site     | Poole Park Miniature Railway | (m):               | 0.65<br>sp      | Plant Used: 2t Tracked Mini Excavator | Scale        |
| Location | Poole Park, Poole, BH15 2SF  | 1.00               | 4.0             | 2t fracked Mini Excavator             | 1:10         |
|          |                              |                    |                 |                                       | Logged By    |

| Grou                  | ind Level (mAOD):                                                 | 1.21                                  | Co-ords:                                    | DNS                              |           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ate(s)  | 01/10/2         | 018   |         | DW      |
|-----------------------|-------------------------------------------------------------------|---------------------------------------|---------------------------------------------|----------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-------|---------|---------|
| All units             | Stratum                                                           | Description                           |                                             | Depth                            | ness      | Lamand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water   | Sample          |       | Testing |         |
| =<br>(m)              | Stratum                                                           | Description                           |                                             | (Level)                          | Thickness | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strikes | (Type)<br>Depth | Depth | Туре    | Results |
| -                     | MADE GROUND. Dar<br>to coarse SAND. Grav<br>angular to sub-rounde | el is fine to                         | coarse                                      |                                  | . (0.57)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.09<br>(B)     |       |         |         |
| -<br>-<br>-<br>-<br>- | Dark brown slightly sa<br>Moderate organic odor                   | ur. (Tidal Fla                        | it Deposits)                                | 1.00 (0.21)                      | (0.43)    | A soller |         | (D)             |       |         |         |
|                       | End of Trie                                                       | al Pit at 1.000n                      | 1                                           | 1.00 (0.21)                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |       |         |         |
| Remark                | ks: Trial pit was excavated bes 0.00-0.09mbgl on northern         | side narrow gau<br>face of trial pit. | ge railway. Bound ma<br>The track is bedded | acadam was re<br>into granular m | corded b  | oetween<br>und.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pi      | t Stability: S  | table |         |         |



Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.
 Densities of granular material, if identified, based on N-Values derived from in situ SPT testing.
 Chalk descriptions, if identified, are in accordance with CIRIA C574
 Sampling terminated at 2.00mbgl due to running sands. Dynamic probe testing undertaken from

2.00mbgl

 Date
 Strike
 Casing
 Time Elapsed
 Standing
 Remarks

 01-10-2018
 1.08m
 2.00m
 20mins
 0.62m



ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

## TRIAL PIT LOG

Trial Pit No.

TP05

Sheet 1 of 1 **Hole Type** Client Borough of Poole Dimensions (m): Lab Ref. 18-96795 Depth ΤP (m): Plant Used: 0.60 Site Poole Park Miniature Railway Scale 1.00 2t Tracked Mini Excavator 1:10 Location Poole Park, Poole, BH15 2SF

Ground Level (mAOD): 1.18 Co-ords: DNS Date(s) 01/10/2018 Logged By

| All<br>units | Chrodium Deservication                                                                                                                                           | Depth            | ness      | las    | Water   | Sample                    |       | Testing |         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--------|---------|---------------------------|-------|---------|---------|
| =<br>(m)     | Stratum Description                                                                                                                                              | Depth<br>(Level) | Thickness | Legend | Strikes | Sample<br>(Type)<br>Depth | Depth | Туре    | Results |
|              | MADE GROUND. Dark brown slightly gravelly silty fine SAND. Gravel is fine to coarse subangular to sub-rounded of flint and brick. Rare roots and rootlets noted. |                  | (0.66)    |        |         | (D)                       |       |         |         |
| -            | Light grey mottled light orange clayey fine SAND. (Poole Formation)                                                                                              | 0.66 (0.52)      |           |        |         | 0.66                      |       |         |         |
| -            |                                                                                                                                                                  |                  | (0.34)    |        |         | (D)                       |       |         |         |
| 1 —          | End of Trial Pit at 1.000m                                                                                                                                       | 1.00 (0.18)      |           |        |         | 1.00                      |       |         |         |
|              |                                                                                                                                                                  |                  |           |        |         |                           |       |         |         |

Remarks: Trial pit was excavated beside narrow gauge railway. The track is bedded into granular made ground.

Pit Stability: Stable

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Not encountered



ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

Co-ords:

# **BOREHOLE LOG**

## WINDOWLESS SAMPLING

18-96795

Borehole No. **WS05** 

Sheet 1 of 1

Borough of Poole Client:

Ground Level (mAOD): 1.18

Lab. Ref:

Not Surveyed

Drilling Equipment: Dando Terrier Mk1 Tracked Dynamic Percussion Rig

Date(s): 01/10/2018

Hole Type WLS Scale 1:25

Contract: Location: Poole Park Miniature Railway Poole Park, Poole, BH15 2SF

Logged By DW

| All<br>units | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth        | Thickness | Legend                                                                                                                                  | Water   | Backfill | Sample<br>(Type) |       | In:        | Situ Testing      | 9               | Drill                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------------|-------|------------|-------------------|-----------------|----------------------|
| =<br>(m)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Level)      | Thic      |                                                                                                                                         | Strikes |          | (Type)<br>Depth  | Depth | Туре       |                   | Results         | Run                  |
| =            | Refer to TP05 Log.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (1.00)    |                                                                                                                                         |         |          |                  |       |            |                   |                 | TP05                 |
| 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -         |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 1 🕂          | Loose brownish grey slightly gravelly silty fine to coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00 (0.18)  |           | * × ×                                                                                                                                   |         |          |                  | 1.00  | SPT(C)     | N=0               | (0,0/0,0,0,0)   |                      |
| =            | SAND. Gravel is fine to coarse sub-angular to sub-<br>rounded of flint. (Tidal Flat Deposits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | (0.37)    | ×××                                                                                                                                     |         |          |                  |       |            |                   |                 |                      |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0.0       | ×××                                                                                                                                     |         |          |                  |       |            |                   |                 |                      |
|              | Describe and all the same describes a second of the same DEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.37 (-0.19) |           | ×××                                                                                                                                     |         |          |                  |       |            |                   |                 |                      |
| 3            | Brownish grey slightly sandy clayey pseudo-fibrous PEAT.<br>Weak organic odour. (Tidal Flat Deposits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           | 316. ×316.                                                                                                                              |         |          |                  |       |            |                   |                 | (87mm dia            |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | 5 × 216. 3                                                                                                                              |         |          |                  |       |            |                   |                 | Rec=86%              |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (0.57)    | alte×alte<br>alte×alte                                                                                                                  |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | ياد.×ياد.<br>عاد.×ياد                                                                                                                   |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101/076)     |           | × ala. s                                                                                                                                |         |          |                  |       |            |                   |                 |                      |
| 2            | Light grey slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.94 (-0.76) |           |                                                                                                                                         |         |          |                  | 2.00  | SPT(C)     | N=9               | (0,2/2,2,3,2)   |                      |
| 7            | Formation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.09 (-0.91) |           | ×××                                                                                                                                     |         |          |                  |       |            |                   |                 |                      |
| 3            | Soft light grey very sandy SILT. Frequent rootlets. (Poole Formation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | <u>₹</u>  | 100 100 100                                                                                                                             |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (0.34)    | $\times \times $ |         |          |                  |       |            |                   |                 |                      |
| -            | Medium dense light grey fine to coarse SAND. (Poole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.43 (-1.25) |           | ×××                                                                                                                                     |         |          |                  |       |            |                   |                 |                      |
| -            | Formation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 | (87mm dia<br>Rec=62% |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (0.81)    |                                                                                                                                         | 1       |          |                  |       |            |                   |                 |                      |
| 3 -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ľ         |                                                                                                                                         | 1       |          |                  | 3.00  | SPT(C)     | N=11              | 2 (1,0/0,3,4,5) |                      |
| , -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         | -       |          |                  | 3.00  | SFI(C)     | 14-12             | (1,0/0,3,4,3)   |                      |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| ‡            | Soft to firm very sandy SILT. (Poole Formation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.24 (-2.06) |           | X X X                                                                                                                                   |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (0.37)    |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 6         |                                                                                                                                         |         |          |                  |       |            |                   |                 | (87mm dia            |
| 7            | Light grey silty fine to coarse SAND. (Poole Formation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.61 (-2.43) |           | XXX                                                                                                                                     |         |          |                  |       |            |                   |                 | Rec=59%              |
| ]            | Light groy only line to obtain on the transfer of the transfer |              |           | ×××                                                                                                                                     |         |          |                  |       |            |                   |                 |                      |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (0.39)    | × ×                                                                                                                                     |         |          |                  |       |            |                   |                 |                      |
| _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ľ         | × × ×                                                                                                                                   |         |          |                  |       |            |                   |                 |                      |
| 4            | End of Borehole at 4.000m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.00 (-2.82) |           |                                                                                                                                         |         | //X////X |                  | 4.00  | SPT(C)     | N=19              | 0 (2,2/3,6,6,4) |                      |
| 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| ]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |
| 5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       | <u> </u>   |                   |                 |                      |
| em           | arks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                                                                                                                                         | Grour   | dwater   | Observa          |       |            |                   |                 |                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         | Date    | Str      | ike Ca           | -     | ne Elapsed | Standing<br>0.61m | Rem             | arks                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                         |         |          |                  |       |            |                   |                 |                      |

01-10-2018

Technical Notes (where applicable):
Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Densities of granular material based on in situ SPT N-values. Chall describtions in accordance with CRIAL CST4'

0.62m

0.00m

20mins

0.61m



### TRIAL PIT LOG

Trial Pit No.

**TP06** Sheet 1 of 1

| Client   | Borough of Poole             | Depth         | Dimensions (m): |
|----------|------------------------------|---------------|-----------------|
| Site     | Poole Park Miniature Railway | ( <b>m</b> ): | 0.60            |
| Location | Poole Park, Poole, BH15 2SF  | 1.00          | 0.4             |

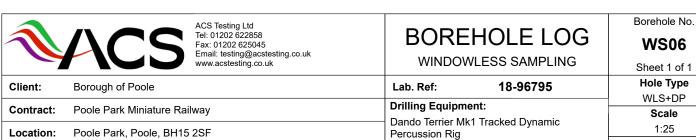
Remarks: Trial pit was excavated beside narrow gauge railway. The track is bedded into granular made ground.

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Technical Notes (where applicable):

Lab Ref. 18-96795 Plant Used:

2t Tracked Mini Excavator


Pit Stability:

Groundwater: Not encountered

**Hole Type** ΤP Scale 1:10

Logged By Co-ords: Date(s) Ground Level (mAOD): 1.20 DNS 02/10/2018 DW

| 1                | <u> </u>                                                                                                                                                       | 1             | L 60      |                                         |         |                  |       | •       |         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------------------------------------|---------|------------------|-------|---------|---------|
| All<br>units     | Stratum Description                                                                                                                                            | Depth         | Thickness | Legend                                  | Water   | Sample<br>(Type) |       | Testing |         |
| =<br>(m)         |                                                                                                                                                                | (Level)       | Thic      |                                         | Strikes | (Type)<br>Depth  | Depth | Туре    | Results |
| -<br>-<br>-      | MADE GROUND. Greyish brown gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded of flint and clinker.                                 |               | •         |                                         |         | 0.00<br>(D)      | ·     |         |         |
| -<br>-<br>-<br>- | Light brown mottled greyish brown slightly gravelly silty fine to coarse SAND. Gravel is fine to medium angular to sub-rounded of flint. (Tidal Flat Deposits) | - 0.28 (0.92) | (1        |                                         |         | 0.28             |       |         |         |
| -                |                                                                                                                                                                | - 0.73 (0.47) | (0.45)    |                                         |         | (D)              |       |         |         |
| -<br>-<br>-      | Greyish brown mottled dark grey sandy pseudo-<br>fibrous PEAT. Weak organic odour. (Tidal Flat<br>Deposits)                                                    | 0.73 (0.47)   |           | allo allo allo allo allo allo allo allo |         | 0.73 (D)         |       |         |         |
| 1 -              | End of Trial Pit at 1.000m                                                                                                                                     | 1.00 (0.20)   |           | alle alle alle a                        |         | 1.00             |       |         |         |
| -                |                                                                                                                                                                |               |           |                                         |         |                  |       |         |         |
| -                |                                                                                                                                                                |               |           |                                         |         |                  |       |         |         |
| -                |                                                                                                                                                                |               |           |                                         |         |                  |       |         |         |
| -                |                                                                                                                                                                |               |           |                                         |         |                  |       |         |         |
| -                |                                                                                                                                                                |               |           |                                         |         |                  |       |         |         |
| -<br>-<br>-      |                                                                                                                                                                |               |           |                                         |         |                  |       |         |         |
| 2                |                                                                                                                                                                |               |           |                                         |         |                  |       |         |         |



Ground Level (mAOD): 1.20 Co-ords: DNS Date(s): 03/10/2018 DW

|                   | (iiii 25);                                                                                                                               |                  |                        | I                                       | 1               |          | - Date(6)                   |      | 10/2010     |              |                 | 700                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|-----------------------------------------|-----------------|----------|-----------------------------|------|-------------|--------------|-----------------|-----------------------|
| All<br>units<br>= | Stratum Description                                                                                                                      | Depth<br>(Level) | Thickness              | Legend                                  | Water<br>Strike | Backfil  | Sample<br>I (Type)<br>Depth |      |             | Situ Testing | •               | Drill<br>Run          |
| m)                | Refer to TP06 Log.                                                                                                                       | (====,           | Ē                      |                                         |                 | X//XX/   | Depth                       | Dept | h Type      | <u> </u>     | Results         |                       |
|                   |                                                                                                                                          |                  | (1.00)                 |                                         |                 | 5        |                             |      |             |              |                 | TP06                  |
|                   | Dark greyish brown sandy pseudo-fibrous PEAT. Moderate organic odour. (Tidal Flat Deposits)                                              | 1.62 (-0.42)     | (0.62)                 | e alle alle alle alle alle alle alle al | 1               |          |                             | 1.00 | SPT(C)      | N=1          | (0,0/0,0,0,1)   | (87mm dia)<br>Rec=81% |
| 2 —               | Medium dense light grey fine to coarse SAND. (Poole Formation)                                                                           | 1.02 ( 0.42)     |                        |                                         |                 |          |                             | 2.00 | SPT(C)      | N=18         | 3 (2,2/3,4,5,6) |                       |
|                   |                                                                                                                                          |                  | (1.38)                 |                                         |                 |          |                             |      |             |              |                 | (87mm dia<br>Rec=51%  |
| · -               | End of Borehole at 3.000m                                                                                                                | 3.00 (-1.80)     | - R                    | 3.00                                    | )m              | 1        | <u>a</u>                    |      |             |              |                 |                       |
| _                 |                                                                                                                                          |                  | Dynamic Probe (DPSH-B) | 3.10                                    | )m              | 4        |                             |      |             |              |                 |                       |
| =                 |                                                                                                                                          |                  | Probe                  | 3.20                                    |                 | 4        |                             |      |             |              |                 |                       |
|                   |                                                                                                                                          |                  | amic                   | 3.30                                    |                 | 9        |                             |      |             |              |                 |                       |
| =                 |                                                                                                                                          |                  | Dy.                    | 3.50                                    |                 | 20       |                             |      |             |              |                 |                       |
| =                 |                                                                                                                                          |                  |                        | 3.60                                    | )m              | 21       |                             |      |             |              |                 |                       |
| 4                 |                                                                                                                                          |                  |                        | 3.70                                    | _               | 26       |                             |      |             |              |                 |                       |
| =                 |                                                                                                                                          |                  |                        | 3.80                                    |                 | 28<br>36 |                             |      |             |              |                 |                       |
| -                 |                                                                                                                                          |                  |                        | 0.00                                    |                 | 00       |                             |      |             |              |                 |                       |
| =                 |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
| -                 |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
| =                 |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
| 7                 |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
|                   |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
| =                 |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
| -                 |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
| 5 -               |                                                                                                                                          |                  |                        |                                         |                 |          |                             |      |             |              |                 |                       |
|                   | General Remarks:                                                                                                                         |                  |                        | Depth                                   |                 | Blows    | r Observati                 | one. | В           | lows/100mm   |                 |                       |
| Co                | nsistency of fine grained soil assessed by hand worked tests in ac                                                                       | cordance with I  | 3S59                   | 30.                                     | Date            |          |                             |      | ime Elapsed | Standing     | Rem             | arks                  |
| ensit<br>halk     | ties of granular material, if identified, based on N-Values derived frond descriptions, if identified, are in accordance with CIRIA C574 | om in situ SPT   | testir                 | ıg. C                                   | 3-10-20         |          |                             | 00m  | 20mins      | 0.98m        |                 |                       |
| San               | npling terminated at 3.00mbgl due to running sands. Dynamic prob<br>bgl.                                                                 | e testing under  | rtake                  | n from                                  |                 |          |                             |      |             |              |                 |                       |



Trial pit was excavated beside narrow gauge railway. The track is bedded into granular made ground and partially covered with macadam.

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Technical Notes (where applicable):

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

### TRIAL PIT LOG

Pit Stability:

Stable

Groundwater: Not encounterd

Trial Pit No.

**TP07** 

Sheet 1 of 1 **Hole Type** Client Borough of Poole Dimensions (m): Lab Ref. 18-96795 Depth TP (m): Plant Used: 0.70 Site Poole Park Miniature Railway Scale 1.00 2t Tracked Mini Excavator 1:10 Location Poole Park, Poole, BH15 2SF Logged By

| Grou              | nd Level (mAOD): 1.21                                                                                 | Co-ords:                     | DNS              |           | Da                                                                                                             | ate(s)           | 01/10/20                  | 018   |         | ged By<br>DW |
|-------------------|-------------------------------------------------------------------------------------------------------|------------------------------|------------------|-----------|----------------------------------------------------------------------------------------------------------------|------------------|---------------------------|-------|---------|--------------|
| All<br>units<br>= | Stratum Description                                                                                   | 1                            | Depth<br>(Level) | Thickness | Legend                                                                                                         | Water<br>Strikes | Sample<br>(Type)<br>Depth | _     | Testing |              |
| (m)               | BOUND MACADAM.                                                                                        |                              | (Level)          | Ţ         |                                                                                                                | Julkes           | Depth                     | Depth | Туре    | Results      |
| -                 | MADE GROUND. Dark brown slig<br>silty fine to coarse SAND. Gravel<br>coarse angular to sub-rounded of | is fine to                   | - 0.08 (1.13)    |           | A CHAPTER ST                                                                                                   |                  | 0.08<br>(D)               |       |         |              |
| -                 | Light brown fine to coarse SAND. Deposits)                                                            | (Tidal Flat                  | 0.32 (0.89)      |           |                                                                                                                |                  | 0.32<br>(D)               |       |         |              |
| -<br>-<br>-<br>-  | Dark brown mottled dark grey sar<br>fibrous PEAT. Moderate organic of<br>Flat Deposits)               | ndy pseudo-<br>dour. (Tidal  | - 0.47 (0.74)    |           | e she she se<br>she she se |                  | 0.47<br>(D)               |       |         |              |
| -                 |                                                                                                       |                              | 0.74 (0.47)      |           | salis salis salis sa<br>s salis salis sas                                                                      |                  | 0.74                      |       |         |              |
| -                 | Light grey mottled dark grey clayer coarse SAND. (Tidal Flat Deposit                                  | ey fine to<br>s)             | 0.74 (0.47)      |           |                                                                                                                |                  | 0.74<br>(D)               |       |         |              |
| -<br>-            | Dark brown mottled dark grey sar<br>fibrous PEAT. Moderate organic of<br>Flat Deposits)               | ndy pseudo-<br>odour. (Tidal | 0.89 (0.32)      |           | onie onie stre si<br>e otto otto stre si<br>e otto otto si<br>e otto otto stre si                              |                  | 0.89<br>(D)               |       |         |              |
| 1                 | End of Trial Pit at 1.000                                                                             | m                            | - 1.00 (0.21)    |           |                                                                                                                |                  |                           |       |         |              |



**WS07** 

Sheet 1 of 1

Borehole No.

18-96795

**Drilling Equipment:** 

Hole Type WLS+DP

Contract: Poole Park Miniature Railway

Dando Terrier Mk1 Tracked Dynamic

Scale 1:25

Location: Poole Park, Poole, BH15 2SF Percussion Rig Logged By Ground Level (mAOD): 1.21 Co-ords: DNS **Date(s):** 03/10/2018 DW

|                                         | , ,                                                                                                                                                                                                         |                  |                        |                                                                               |                                        |                             | . ,                         |       |            |              |                 | VV                    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|-------------------------------------------------------------------------------|----------------------------------------|-----------------------------|-----------------------------|-------|------------|--------------|-----------------|-----------------------|
| All<br>units<br>=                       | Stratum Description                                                                                                                                                                                         | Depth<br>(Level) | Thickness              | Legend                                                                        | Wate<br>Strike                         | r<br>Backfill               | Sample<br>I (Type)<br>Depth |       |            | Situ Testing |                 | Drill<br>Run          |
| (m)                                     |                                                                                                                                                                                                             | (20461)          | Ĕ                      |                                                                               |                                        |                             |                             | Depth | Туре       | 1            | Results         | IXUII                 |
| 111111111111111111111111111111111111111 | Refer to TP07 Log.                                                                                                                                                                                          | 100(23)          | (1.00)                 |                                                                               |                                        |                             |                             | 1.00  | 207/6      |              | (0.0/0.00.1)    | TP07                  |
| 1 -                                     | Dark brown mottled dark grey sandy pseudo-fibrous PEAT.  Moderate organic odour. (Tidal Flat Deposits)  Light greyish brown peaty fine to coarse SAND. (Tidal Flat                                          | 1.00 (0.21)      | (0.32)                 | e alte a<br>alte alte<br>e alte a<br>alte alte<br>e alte a                    |                                        |                             |                             | 1.00  | SPT(C)     | N=1          | (0,0/0,0,0,1)   |                       |
|                                         | Deposits)  Medium dense light grey fine to coarse SAND. (Poole Formation)                                                                                                                                   | - 1.47 (-0.26)   |                        | alk.                                                                          |                                        | 7                           |                             |       |            |              |                 | (87mm dia)<br>Rec=81% |
| 2                                       |                                                                                                                                                                                                             | - 3.00 (-1.79)   | (1.53)                 |                                                                               |                                        |                             |                             | 2.00  | SPT(C)     | N=2          | 1 (4,6/4,5,5,7) | (87mm dia)<br>Rec=53% |
| 4                                       | End of Borehole at 3.000m                                                                                                                                                                                   | 5.00 (-1.79)     | Dynamic Probe (DPSH-B) | 3.000<br>3.10<br>3.20<br>3.30<br>3.40<br>3.50<br>3.60<br>3.70<br>3.80<br>3.90 | Om | 1 4 10 12 12 17 25 37 36 35 |                             |       |            |              |                 |                       |
| 5                                       |                                                                                                                                                                                                             |                  |                        |                                                                               |                                        |                             |                             |       |            |              |                 |                       |
|                                         | General Remarks:                                                                                                                                                                                            |                  |                        | Depth                                                                         |                                        | Blows                       | r Observati                 | ione: | В          | lows/100mm   |                 |                       |
| 1. Cor                                  | nsistency of fine grained soil assessed by hand worked tests in ac                                                                                                                                          | cordance with E  | 3S59                   | 30.                                                                           | Date                                   |                             |                             |       | ne Elapsed | Standing     | Rem             | arks                  |
| Densiti<br>Chalk                        | ies of granular material, if identified, based on N-Values derived fr<br>descriptions, if identified, are in accordance with CIRIA C574<br>opling terminated at 3.00mbgl due to running sands. Dynamic prol | om in situ SPT   | testin                 | g. C                                                                          | 03-10-20                               |                             |                             | 00m   | 20mins     | 1.57m        | Neill           |                       |



Trial pit was excavated beside narrow gauge railway. Kerbstone recorded on southern face of trial pit between 0.05-0.29mbgl. The track is bedded into granular made ground.

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Technical Notes (where applicable):

Site

Poole Park Miniature Railway

(m):

1.00

 TRIAL PIT LOG
 TP08

 Sheet 1 of 1
 Hole Type

 Lab Ref.
 18-96795
 TP

 Plant Used:
 Scale

 2t Tracked Mini Excavator
 1410

Trial Pit No.

Location Poole Park, Poole, BH15 2SF

Ground Level (mAOD): 1.17 Co-ords: DNS

Date(s) 01/10/2018

1:10

Logged By

DW

0.65

| All               |                                                                                                                                                     | Donth            | ess       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/2424          | Sample                        |       | Testing |         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|-------|---------|---------|
| units<br>=<br>(m) | Stratum Description                                                                                                                                 | Depth<br>(Level) | Thickness | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water<br>Strikes | Sample<br>(Type)<br>Depth     | Depth | Туре    | Results |
| -                 | MADE GROUND. Dark greyish brown slightly gravelly silty fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded of flint and concrete. |                  | . (0.58)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 0.29                          | ·     |         |         |
| -<br>-<br>-       |                                                                                                                                                     | 0.58 (0.59)      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (D)                           |       |         |         |
| -                 | Brownish grey clayey organic fine to coarse SAND. (Tidal Flat Deposits)                                                                             | 0.50 (0.55)      | (0.36)    | alle alle a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 0.58<br>(D)                   |       |         |         |
| 1 -               | Soft light grey mottled dark grey slightly sandy CLAY. (Poole Formation)  End of Trial Pit at 1.000m                                                | 0.94 (0.23)      |           | coller of coller |                  | 0.9年 <b>(D)</b> 0.94 (D) 1.00 |       |         |         |
| -<br>-<br>-       |                                                                                                                                                     |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |       |         |         |
| -<br>-<br>-       |                                                                                                                                                     |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |       |         |         |
| _<br>-<br>-       |                                                                                                                                                     |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |       |         |         |
| -<br>-<br>-<br>-  |                                                                                                                                                     |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |       |         |         |
| 2 —               |                                                                                                                                                     |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |       |         |         |

Pit Stability:

Groundwater: Not encountered



## **BOREHOLE LOG**

WINDOWLESS SAMPLING

Borehole No. WS08

Hole Type

Sheet 1 of 1

Client: Borough of Poole

Ground Level (mAOD):

Contract:

Lab. Ref: 18-96795

Drilling Equipment:

Dando Terrier Mk1 Tracked Dynamic Percussion Rig WLS+DP Scale 1:25

**Location:** Poole Park, Poole, BH15 2SF

Poole Park Miniature Railway

Co-ords:

DNS

Date(s): 03/10/2018

|                   | ind Level (IIIAOD).                                                                                                                                                                                                                                      | Co-orus.                    | סמוכ                   |                                                               |                  |          | Date(S)                      | . 03/1 | 0/2010      |              |                 | DW                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|---------------------------------------------------------------|------------------|----------|------------------------------|--------|-------------|--------------|-----------------|-----------------------|
| All<br>units<br>= | Stratum Description                                                                                                                                                                                                                                      | Depth<br>(Level)            | Thickness              | Legend                                                        | Water<br>Strikes | Backfil  | Sample<br>II (Type)<br>Depth |        |             | Situ Testing | J               | Drill<br>Run          |
| m)                | Refer to TP08 Log.                                                                                                                                                                                                                                       | (Level)                     | Ē                      |                                                               |                  | K////X// | Depth                        | Depti  | n Type      |              | Results         | - Itali               |
|                   | , dad 6 11 50 Edg.                                                                                                                                                                                                                                       |                             | (1.00)                 |                                                               | •                |          |                              |        |             |              |                 | TP08                  |
| 1                 | Soft dark grey slightly gravelly sandy organic CLAY. is fine to medium sub-angular to sub-rounded of flint Occasional roots and rootlets. (Tidal Flat Deposits)  Dark brown sandy pseudo-fibrous PEAT.  Soft grey very sandy SILT. (Tidal Flat Deposits) | 1.00 (0.17)<br>1.21 (-0.04) | (0.48)                 |                                                               |                  |          |                              | 1.00   | SPT(C)      | N=12         | 2 (0.0/2,3,3,4) | (87mm dia)            |
| 2 —               | Medium dense grey fine to coarse SAND. (Tidal Flat Deposits)                                                                                                                                                                                             | 205 (200)                   | (0.37)                 | × × ×<br>× × ×                                                |                  |          |                              | 2.00   | SPT(C)      | N=14         | 4 (0,0/2,4,4,4) | Rec=81%               |
| -                 | Dark brown sandy pseudo-fibrous PEAT. Weak organ<br>odour. (Tidal Flat Deposits)  Light grey mottled dark grey fine to coarse SAND. (P                                                                                                                   | 2.42(4.25)                  | 18.                    | s alte al<br>alte alte<br>s alte al<br>alte alte<br>s alte al |                  |          |                              |        |             |              |                 | (67. 11.)             |
| 3                 | Formation)                                                                                                                                                                                                                                               | 3.00 (-1.83)                | (0.58)                 |                                                               |                  |          |                              | 3.00   | SPT(C)      | N=18         | 3 (1,1/2,5,5,6) | (87mm dia)<br>Rec=75% |
| -                 | End of Borehole at 3.000m                                                                                                                                                                                                                                |                             |                        | 3.00                                                          |                  | 2        |                              |        |             |              | ,               |                       |
| =                 |                                                                                                                                                                                                                                                          |                             |                        | 3.10                                                          |                  | 7        |                              |        |             |              |                 |                       |
| -                 |                                                                                                                                                                                                                                                          |                             |                        | 3.30                                                          |                  | 5        |                              |        |             |              |                 |                       |
| -                 |                                                                                                                                                                                                                                                          |                             |                        | 3.40                                                          |                  | 3        |                              |        |             |              |                 |                       |
| 7                 |                                                                                                                                                                                                                                                          |                             |                        | 3.50                                                          | m                | 2        |                              |        |             |              |                 |                       |
| 3                 |                                                                                                                                                                                                                                                          |                             |                        | 3.60                                                          | m                | 3        |                              |        |             |              |                 |                       |
| 1                 |                                                                                                                                                                                                                                                          |                             | 9 H                    | 3.70                                                          |                  | 3        |                              |        |             |              |                 |                       |
| 7                 |                                                                                                                                                                                                                                                          |                             | (DPS                   | 3.80                                                          |                  | 6        |                              |        |             |              |                 |                       |
| 1                 |                                                                                                                                                                                                                                                          |                             | Probe                  | 3.90<br>4.00                                                  |                  | 17       |                              |        |             |              |                 |                       |
| -                 |                                                                                                                                                                                                                                                          |                             | Dynamic Probe (DPSH-B) | 4.10                                                          |                  | 21       |                              |        |             |              |                 |                       |
| 7                 |                                                                                                                                                                                                                                                          |                             | Dyn                    | 4.20                                                          | m                | 24       |                              |        |             |              |                 |                       |
| -                 |                                                                                                                                                                                                                                                          |                             |                        | 4.30                                                          | m                | 23       |                              |        |             |              |                 |                       |
| _                 |                                                                                                                                                                                                                                                          |                             |                        | 4.40                                                          |                  | 19       |                              |        |             |              |                 |                       |
| 1                 |                                                                                                                                                                                                                                                          |                             |                        | 4.50                                                          |                  | 15<br>13 |                              |        |             |              |                 |                       |
| =                 |                                                                                                                                                                                                                                                          |                             |                        | 4.60                                                          |                  | 12       |                              |        |             |              |                 |                       |
| =                 |                                                                                                                                                                                                                                                          |                             |                        | 4.80                                                          |                  | 9        |                              |        |             |              |                 |                       |
| _ ‡               |                                                                                                                                                                                                                                                          |                             |                        | 4.90                                                          | m                | 8        |                              |        |             |              |                 |                       |
| 5 —               |                                                                                                                                                                                                                                                          | -                           |                        | Depth                                                         | (m) E            | lows     |                              |        | В           | lows/100mm   |                 |                       |
|                   | General Remarks:                                                                                                                                                                                                                                         |                             |                        |                                                               |                  |          | r Observati                  | ons:   |             |              |                 |                       |
| Cons              | sistency of fine grained soil assessed by hand worked<br>as of granular material, if identified, based on N-Values                                                                                                                                       | tests in accordance with    | BS593                  |                                                               | Date             |          |                              | -      | ime Elapsed | Standing     | Rer             | narks                 |
| onciti-           |                                                                                                                                                                                                                                                          | C574                        | (CSUI)                 | J. [7                                                         | 3-10-20          | 10 1     | .00m 2.0                     | 00m    | 20mins      | 0.87m        | 1               |                       |



### TRIAL PIT LOG

Trial Pit No.

**TP09** 

Sheet 1 of 1 **Hole Type** Client Borough of Poole Dimensions (m): Lab Ref. 18-96795 Depth ΤP (m): Plant Used: 0.65 Site Poole Park Miniature Railway Scale 1.00 2t Tracked Mini Excavator 1:10 Location Poole Park, Poole, BH15 2SF

Logged By Co-ords: Date(s) 02/10/2018 Ground Level (mAOD): 1.43 DNS DW

| All<br>units               | Stratum Decariation                                                                                                                         | Depth         | Thickness | Legend                                                                                                                | Water   | Sample<br>(Type) |       | Testing |         |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------|---------|------------------|-------|---------|---------|
| =<br>(m)                   | Stratum Description                                                                                                                         | (Level)       | Thick     | Legena                                                                                                                | Strikes | (Type)<br>Depth  | Depth | Туре    | Results |
| -                          | TOPSOIL. Dark brown slightly gravelly silty organic fine SAND. Gravel is fine to coarse angular to sub-rounded of flint. Frequent rootlets. | - 0.39 (1.04) | (0.39)    |                                                                                                                       |         | (D)              |       |         |         |
| -<br>-<br>-<br>-<br>-<br>- | Multicoloured greyish brown, orange and dark grey silty fine SAND. (Tidal Flat Deposits)                                                    |               | (0.34)    |                                                                                                                       |         | (D)              |       |         |         |
| -                          | Light brownish grey very sandy pseudo-fibrous PEAT. Weak organic odour. (Tidal Flat Deposits)                                               | 0.73 (0.70)   |           | allo alto alto a                                                                                                      |         | 0.73<br>0.73     |       |         |         |
| -                          |                                                                                                                                             | - 1.00 (0.43) |           | allo alle alle es  alle alle alle se  alle alle alle se  alle alle alle se  alle alle alle  alle alle alle  alle alle |         | (B)              |       |         |         |
| 1 🕇                        | End of Trial Pit at 1.000m                                                                                                                  | 1.00 (0.43)   |           |                                                                                                                       |         |                  |       |         |         |
|                            |                                                                                                                                             |               |           |                                                                                                                       |         |                  |       |         |         |

Remarks: Trial pit was excavated beside narrow gauge railway. The track is bedded into granular topsoil.

Pit Stability:

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Seepage from southern face of trial pit. Slow flow rate



## **BOREHOLE LOG**

#### WINDOWLESS SAMPLING

Borehole No. **WS09** 

Sheet 1 of 1

Client: Borough of Poole Lab. Ref: 18-96795

**Drilling Equipment:** 

Hole Type WLS+DP

Contract:

Poole Park Miniature Railway

Dando Terrier Mk1 Tracked Dynamic Percussion Rig

Scale 1:25

Location: Poole Park, Poole, BH15 2SF

| Gro             | ound Level (mAOD): 1.43 Co-o                                                                                                                                                                                                                                                       | rds: [                                     | ONS                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | Date(s):          | : 04/10 | 0/2018     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <b>ged By</b><br>DW   |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|
| All<br>units    | Stratum Description                                                                                                                                                                                                                                                                | Depth                                      | Thickness              | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water    | Backfill | Sample (Type)     |         | ln :       | Situ Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Drill                 |
| =<br>(m)        | oratum bescription                                                                                                                                                                                                                                                                 | (Level)                                    | Pic                    | Legena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Strikes  | Duckin   | I (Type)<br>Depth | Depth   | Туре       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Results       | Run                   |
|                 | Refer to TP09 Log.                                                                                                                                                                                                                                                                 |                                            | (1.00)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *        |          |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | TP09                  |
| 1               | Greyish brown very sandy pseudo-fibrous PEAT. Weak organic odour. (Tidal Flat Deposits)  Medium dense brownish grey slightly sandy silty fine to coarse sub-angular to sub-rounded GRAVEL of flint. (Tidal Flat Deposits)  Dense light grey fine to coarse SAND. (Poole Formation) | 1.00 (0.43)<br>1.34 (0.09)<br>1.46 (-0.03) | (0.34)                 | is in its |          |          |                   | 1.00    | SPT(C)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4.5/6.7.9.7) | (87mm dia)<br>Rec=82% |
| 2               |                                                                                                                                                                                                                                                                                    |                                            | (1.54)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                   | 2.00    | SPT(C)     | N=31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5,6/7,7,8,9) | (87mm dia)<br>Rec=51% |
| 3 -             | End of Borehole at 3.000m                                                                                                                                                                                                                                                          | 3.00 (-1.57)                               |                        | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m        | 1        | <u> </u>          |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| -               |                                                                                                                                                                                                                                                                                    |                                            |                        | 3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 2        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| =               |                                                                                                                                                                                                                                                                                    |                                            |                        | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m        | 3        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
|                 |                                                                                                                                                                                                                                                                                    |                                            |                        | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m        | 4        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| _               |                                                                                                                                                                                                                                                                                    |                                            |                        | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 4        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| . =             |                                                                                                                                                                                                                                                                                    |                                            |                        | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 4        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| . 7             |                                                                                                                                                                                                                                                                                    |                                            |                        | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 3        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| ]               |                                                                                                                                                                                                                                                                                    |                                            | SH-B                   | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 3        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
|                 |                                                                                                                                                                                                                                                                                    |                                            | e (P                   | 3.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 6        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| 4 —             |                                                                                                                                                                                                                                                                                    |                                            | Prob                   | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m        | 8        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| ]               |                                                                                                                                                                                                                                                                                    |                                            | Dynamic Probe (DPSH-B) | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m        | 5        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| -               |                                                                                                                                                                                                                                                                                    |                                            | Dy                     | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 5        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| _               |                                                                                                                                                                                                                                                                                    |                                            |                        | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 7        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| _               |                                                                                                                                                                                                                                                                                    |                                            |                        | 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 18       |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| ]               |                                                                                                                                                                                                                                                                                    |                                            |                        | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 6        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| =               |                                                                                                                                                                                                                                                                                    |                                            |                        | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 7        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
|                 |                                                                                                                                                                                                                                                                                    |                                            |                        | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 9        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
|                 |                                                                                                                                                                                                                                                                                    |                                            |                        | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 8        |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |
| 5 —             |                                                                                                                                                                                                                                                                                    |                                            |                        | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (m) PI   | ows      |                   |         | RI         | ows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                       |
|                 | General Remarks:                                                                                                                                                                                                                                                                   |                                            |                        | Debru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          | r Observati       | ons:    | В          | Office of the state of the stat |               |                       |
| 1. Co           | nsistency of fine grained soil assessed by hand worked tests in                                                                                                                                                                                                                    | accordance with E                          | 3S59                   | 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date     |          |                   |         | me Elapsed | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rem           | narks                 |
| Densit<br>Chalk | ies of granular material, if identified, based on N-Values derived<br>descriptions, if identified, are in accordance with CIRIA C574<br>npling terminated at 3.00mbgl due to running sands. Dynamic p                                                                              | d from in situ SPT                         | testin                 | g. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-10-201 |          |                   | 00m     | 20mins     | 0.54m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                       |
|                 |                                                                                                                                                                                                                                                                                    |                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |



ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

### TRIAL PIT LOG

Trial Pit No.

**TP10** 

Sheet 1 of 1 **Hole Type** Client Borough of Poole Dimensions (m): Lab Ref. 18-96795 Depth ΤP (m): Plant Used: 0.65 Site Poole Park Miniature Railway Scale 1.00 2t Tracked Mini Excavator 1:10 Location Poole Park, Poole, BH15 2SF Logged By

| l<br>ts | Stratum                                            | Description   |                | Depth       | Thickness | Legend                                                                                                                                  | Water<br>Strikes | Sample<br>(Type) |       | Testing |        |
|---------|----------------------------------------------------|---------------|----------------|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------|---------|--------|
| )       |                                                    |               |                | (Level)     | Ę         | -                                                                                                                                       | Strikes          | (Type)<br>Depth  | Depth | Туре    | Result |
|         | BOUND MACADAM.                                     |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| }       | MADE GROUND. Dark                                  | arevish bro   | own verv       | 0.07 (1.47) |           |                                                                                                                                         |                  | 0.07             |       |         |        |
| 1       | sandy fine to medium s                             | ub-angular    | to sub-        |             |           |                                                                                                                                         |                  | (D)              |       |         |        |
| +       | rounded GRAVEL of flir                             | nt and limes  | stone.         |             |           |                                                                                                                                         |                  | (D)              |       |         |        |
| 1       | Multicoloured greyish b                            | rown oron     | ao and dark    | 0.21 (1.33) |           |                                                                                                                                         |                  | 0.21<br>0.21     |       |         |        |
| +       | grey silty fine SAND. O                            | ccasional p   | ockets of firm |             |           | x ^                                                                                                                                     |                  |                  |       |         |        |
| $\perp$ | greyish brown very san                             | dy silt. (Tid | al Flat        |             |           | x × x x x                                                                                                                               |                  | (D)              |       |         |        |
| -       | Deposits)                                          |               |                |             |           | x × x x                                                                                                                                 |                  |                  |       |         |        |
| ŀ       | Dark grey silty fine to co                         | narse SANI    | D (Tidal Flat  | 0.38 (1.16) |           | X X XX                                                                                                                                  |                  | 0.38<br>0.38     |       |         |        |
|         | Deposits)                                          |               | 2. (           |             |           | x × x                                                                                                                                   |                  |                  |       |         |        |
| 1       |                                                    |               |                |             |           | x × ^ × x                                                                                                                               |                  |                  |       |         |        |
| 1       |                                                    |               |                |             |           | × × × ×                                                                                                                                 |                  |                  |       |         |        |
| 1       |                                                    |               |                |             | _         | ××××                                                                                                                                    |                  |                  |       |         |        |
| +       |                                                    |               |                |             | (0.43)    | (x × x · )                                                                                                                              |                  | (B)              |       |         |        |
| +       |                                                    |               |                |             |           | ××××                                                                                                                                    |                  |                  |       |         |        |
| 4       |                                                    |               |                |             |           | X X X                                                                                                                                   |                  |                  |       |         |        |
|         |                                                    |               |                |             |           | x × x x x                                                                                                                               |                  |                  |       |         |        |
|         |                                                    |               |                |             |           | × × × ×                                                                                                                                 |                  |                  |       |         |        |
| 1       | Firm light grey mottled                            | orange slig   | htly gravelly  | 0.81 (0.73) |           | $\times \times \times \times \times$                                                                                                    |                  | 0.81<br>0.81     |       |         |        |
| 1       | sandy SILT. Gravel is fit to sub-rounded of flint. | ne to coars   | e sub-angular  |             |           | $\times \times $ |                  |                  |       |         |        |
| 1       | to sub-rounded or filmt.                           | (Poole Foli   | nation)        |             |           | X X X X X X X X                                                                                                                         |                  | (D)              |       |         |        |
| +       |                                                    |               |                |             |           | ××××××                                                                                                                                  |                  |                  |       |         |        |
| +       | End of Trial                                       | Pit at 1.000n | 1              | 1.00 (0.54) |           | x x x x x x x                                                                                                                           |                  | 1.00             |       |         |        |
| 4       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 4       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| -       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
|         |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
|         |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
|         |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 1       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 1       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| +       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| +       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 4       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 1       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
|         |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
|         |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 1       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 1       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| +       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| +       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| +       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
| 4       |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
|         |                                                    |               |                |             |           |                                                                                                                                         |                  |                  |       |         |        |
|         |                                                    |               |                | I           |           | 1                                                                                                                                       |                  |                  |       |         |        |

Trial pit was excavated beside narrow gauge railway. The track is bedded into granular made ground and partially covered with macadam.

Pit Stability: Stable

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Not encountered



Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

### TRIAL PIT LOG

Trial Pit No.

**Hole Type** 

ΤP

Scale

**TP11**Sheet 1 of 1

Client Borough of Poole

Site Poole Park Miniature Railway

Location Poole Park, Poole, BH15 2SF

Depth (m):
0.65
Plant Used:
2t Tracked Mini Excavator

1:10 Logged By

Seepage from south-eastern face of trial pit. Fast flow rate.

| rour      | nd Level (mAOD):                                                                       | 1.97              | Co-ords:     | DNS              |           |        | Date(s)          | 02/10/2                   | 018   |         | DW     |
|-----------|----------------------------------------------------------------------------------------|-------------------|--------------|------------------|-----------|--------|------------------|---------------------------|-------|---------|--------|
| II<br>its | Stratun                                                                                | n Description     | ı            | Depth<br>(Level) | Thickness | Legend | Water<br>Strikes | Sample<br>(Type)<br>Depth |       | Testing |        |
| -         | TOPSOIL. Soft dark be slightly gravelly sandy coarse sub-angular to Frequent rootlets. | orown mottle      | d dark grey  |                  | Thir      |        | Strikes          | (D)                       | Depth | Туре    | Result |
| -         | Dark grey slightly gray<br>SAND. Gravel is fine to<br>sub-rounded of flint. (          | to coarse sul     | b-angular to | 0.21 (1.76)      |           |        |                  | 0.21 (D)                  |       |         |        |
| -         | Greyish brown gravel<br>Gravel is fine to coars<br>rounded of flint. (Tidal            | se sub-angul      | ar to sub-   | 0.47 (1.50)      |           |        |                  | 0.47                      |       |         |        |
| -         |                                                                                        |                   |              |                  | (0.53)    |        |                  | (B)                       |       |         |        |
| +         | End of Tri                                                                             | ial Pit at 1.000r | m            | 1.00 (0.97)      |           |        |                  | 1.00                      |       |         |        |
|           |                                                                                        |                   |              |                  |           |        |                  |                           |       |         |        |
| -         |                                                                                        |                   |              |                  |           |        |                  |                           |       |         |        |
| -         |                                                                                        |                   |              |                  |           |        |                  |                           |       |         |        |



Contract:

Ground Level (mAOD):

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

## **BOREHOLE LOG**

WINDOWLESS SAMPLING

**WS11** 

Borehole No.

Sheet 1 of 1

Client: Lab. Ref: Borough of Poole **Drilling Equipment:** 

18-97184

Hole Type WLS+DP

Poole Park, Poole, BH15 2SF

Poole Park Miniature Railway

Dando Terrier Mk2 Tracked Dynamic Perussion Rig

Scale 1:25

Location:

Co-ords: DNS Date(s): 18/10/2018 Logged By DW

| 0.00              | ind Level (mAOD). 1.97                                                                                               | Co-orus.                      | סמוכ                   |        |                  |          | Date(S).                  | 10/10 | 7/2010     |              | L               | OW                     |
|-------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|--------|------------------|----------|---------------------------|-------|------------|--------------|-----------------|------------------------|
| All<br>units<br>= | Stratum Description                                                                                                  | Depth                         | Thickness              | Legend | Water<br>Strikes | Backfill | Sample<br>(Type)<br>Depth |       | In         | Situ Testinç | 9               | Drill                  |
| =<br>(m)          |                                                                                                                      | (Level)                       | Thic                   |        | JUNES            | .,,,,,,  | Depth                     | Depth | Туре       |              | Results         | Run                    |
|                   | Refer to TP11 Log.                                                                                                   |                               | (1.00)                 |        |                  |          |                           |       |            |              |                 | TP11                   |
| 1 —               | Medium dense greyish brown gravelly fine to coarse S<br>Gravel is fine to coarse sub-angular to sub-rounded or       | SAND. 1.00 (0.97)<br>f flint. |                        |        | *                |          |                           | 1.00  | SPT(C)     | N=18         | 8 (2,2/3,4,6,5) |                        |
| }                 | (Tidal Flat Deposits)  Medium dense light brown fine to coarse SAND. (Poo                                            | le 1.21 (0.76)                |                        | N.     | 1                |          |                           |       |            |              |                 |                        |
|                   | Formation)                                                                                                           |                               | (0.79)                 |        |                  |          |                           |       |            |              |                 | (87mm dia)<br>Rec=100% |
| -                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| 2                 | End of Borehole at 2.000m                                                                                            | 2.00 (-0.03)                  |                        | 2.00   | . <br>]m         | 2        | 1                         |       |            |              |                 |                        |
| -                 |                                                                                                                      |                               |                        | 2.10   |                  | 3        |                           |       |            |              |                 |                        |
| 1                 |                                                                                                                      |                               |                        | 2.20   |                  | 4        |                           |       |            |              |                 |                        |
| 3                 |                                                                                                                      |                               |                        | 2.30   | 0m               | 5        |                           |       |            |              |                 |                        |
| _                 |                                                                                                                      |                               |                        | 2.40   |                  | 5        |                           |       |            |              |                 |                        |
| 1                 |                                                                                                                      |                               |                        | 2.50   |                  | 6        |                           |       |            |              |                 |                        |
| =                 |                                                                                                                      |                               |                        | 2.60   |                  | 9        |                           |       |            |              |                 |                        |
| -                 |                                                                                                                      |                               | Dynamic Probe (DPSH-B) | 2.80   |                  | 10       |                           |       |            |              |                 |                        |
| . =               |                                                                                                                      |                               | 9 (D                   | 2.90   |                  | 13       |                           |       |            |              |                 |                        |
| 3 —               |                                                                                                                      |                               | c Prot                 | 3.00   | 0m               | 11       |                           |       |            |              |                 |                        |
|                   |                                                                                                                      |                               | /nami                  | 3.10   |                  | 12       |                           |       |            |              |                 |                        |
| -                 |                                                                                                                      |                               | ۵                      | 3.20   |                  | 11 10    |                           |       |            |              |                 |                        |
| ]                 |                                                                                                                      |                               |                        | 3.40   |                  | 13       |                           |       |            |              |                 |                        |
| _                 |                                                                                                                      |                               |                        | 3.50   |                  | 13       |                           |       |            |              |                 |                        |
| =                 |                                                                                                                      |                               |                        | 3.60   | 0m               | 15       |                           |       |            |              |                 |                        |
| -                 |                                                                                                                      |                               |                        | 3.70   | 0m               | 14       |                           |       |            |              |                 |                        |
| -                 |                                                                                                                      |                               |                        | 3.80   |                  | 13       |                           |       |            |              |                 |                        |
| 4 —               |                                                                                                                      |                               |                        | 3.90   | Om               | 9        |                           |       |            |              |                 |                        |
| -                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| =                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| 3                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| _                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| ‡                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| =                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| =                 |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| _ =               |                                                                                                                      |                               |                        |        |                  |          |                           |       |            |              |                 |                        |
| 5 —               |                                                                                                                      |                               | -                      | Depti  | ) (m) [          | Blows    |                           |       | R          | lows/100mm   |                 |                        |
|                   | General Remarks:                                                                                                     | <u> </u>                      |                        | 1 2000 |                  |          | Observation               | ons:  |            |              |                 |                        |
| Cons              | sistency of fine grained soil assessed by hand worked to<br>so f granular material, if identified, based on N-Values | ests in accordance with       | BS59                   | 30.    | Date             |          |                           | -     | ne Elapsed | Standing     | Ren             | narks                  |
| halk d            | escriptions, if identified, are in accordance with CIRIA C                                                           | 574                           |                        |        | 18-10-20         | 18 0.:   | 32m 0.0                   | 10m   | 20mins     | 0.24m        |                 |                        |
| Samp<br>00mb      | oling terminated at 2.00mbgl due to running sands. Dyn                                                               | amic Probe testing unde       | rtake                  | n from |                  |          |                           |       |            |              |                 |                        |



#### TRIAL PIT LOG

Trial Pit No. **TP12** 

1712

Sheet 1 of 1 **Hole Type** Client Dimensions (m): Lab Ref. 18-96795 Borough of Poole Depth TP (m): Plant Used: 0.65 Site Poole Park Miniature Railway Scale 1.00 2t Tracked Mini Excavator 1:10 Location Poole Park, Poole, BH15 2SF Logged By

Date(s) 02/10/2018 Co-ords: Ground Level (mAOD): 2.15 DNS DW Sample (Type) Depth Testing Depth (Level) Water Strikes Stratum Description (m) Depth Туре Results TOPSOIL. Dark brown slightly gravelly silty fine SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. Frequent roots and rootlets. (0.43)(D) 0.43 (1.72) Light grey mottled greyish brown slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits) (0.57)(B) 1.00 (1.15) End of Trial Pit at 1.000m

Remarks: Trial pit was excavated beside narrow gauge railway. The track is bedded into granular topsoil.

Pit Stability: Stable

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Not encountered



 Ground Level (mAOD):
 2.15
 Co-ords:
 DNS
 Date(s):
 04/10/2018
 DW

Borehole No.

**WS12** 

Sheet 1 of 1

Hole Type

WLS+DP

Scale

1:25

|                   | , ,                                                                                                                                                                                                       |                                |                        |                                                                                           | 1               |                                                                                                   |            |       | DVV                 |                                        |                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|-------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|------------|-------|---------------------|----------------------------------------|------------------------|
| All<br>units<br>= | Stratum Description                                                                                                                                                                                       | Thickness                      | Legend                 | Water<br>Strikes                                                                          | Backfill        | Sample<br>(Type)<br>Depth                                                                         |            | ln :  | Situ Testing        | Drill<br>Run                           |                        |
| (m)               |                                                                                                                                                                                                           | (Level)                        | ĬĔ                     |                                                                                           | Otrikes         | ×///×//                                                                                           | Depth      | Depth | Туре                | Results                                | Kuii                   |
|                   | Refer to TP12 Log.                                                                                                                                                                                        |                                | (1.00)                 |                                                                                           |                 |                                                                                                   |            |       | 207/0               |                                        | TP12                   |
| 1                 | Dense greyish brown mottled dark grey fine to coarse SAND. (Tidal Flat Deposits)  Medium dense light grey mottled light brown fine to coarse SAND. (Poole Formation)                                      | - 1.00 (1.15)<br>- 1.33 (0.82) | (0.33)                 |                                                                                           |                 |                                                                                                   |            | 2.00  | SPT(C)              | N=31 (5,5/7,8,8,8)  N=22 (4,3/3,4,6,9) | (87mm dia)<br>Rec=100% |
| 3                 |                                                                                                                                                                                                           | - 3.00 (-0.85)                 | (1.67)                 |                                                                                           |                 |                                                                                                   |            |       |                     |                                        | (87mm dia)<br>Rec=81%  |
| 4                 | End of Borehole at 3.000m                                                                                                                                                                                 |                                | Dynamic Probe (DPSH-B) | 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 |                 | 2<br>3<br>3<br>4<br>8<br>8<br>5<br>5<br>5<br>5<br>4<br>4<br>6<br>6<br>5<br>8<br>8<br>8<br>7<br>11 |            |       |                     |                                        |                        |
| -                 |                                                                                                                                                                                                           |                                |                        | Depth                                                                                     |                 | Blows                                                                                             |            |       | ВІ                  | ows/100mm                              |                        |
| 1 00-             | General Remarks: sistency of fine grained soil assessed by hand worked tests in ac                                                                                                                        | cordance with "                | SCEU.                  | 30                                                                                        |                 |                                                                                                   | r Observat |       |                     | Standing:                              | Damanis -              |
| Densiti<br>Chalk  | es of granular material, if identified, based on N-Values derived fr<br>descriptions, if identified, are in accordance with CIRIA C574<br>pling terminated at 3.00mbgl due to running sands. Dynamic Prot | om in situ SPT                 | testin                 | g. C                                                                                      | Date<br>4-10-20 |                                                                                                   |            | -     | e Elapsed<br>20mins | Standing<br>1.12m                      | Remarks                |



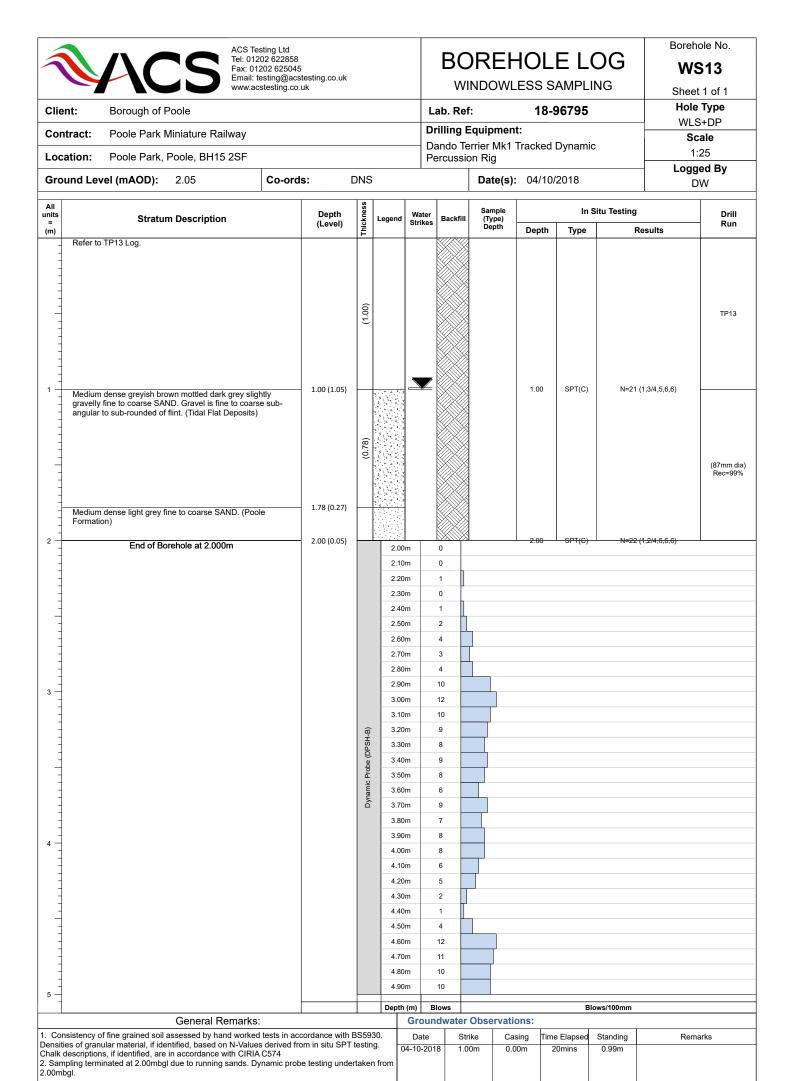
Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

### TRIAL PIT LOG

Groundwater: Not encountered


Trial Pit No.

**TP13**Sheet 1 of 1

**Hole Type** Client Borough of Poole Dimensions (m): Lab Ref. 18-96795 Depth ΤP (m): Plant Used: 0.65 Site Poole Park Miniature Railway Scale 1.00 2t Tracked Mini Excavator 1:10 Location Poole Park, Poole, BH15 2SF

Ground Level (mAOD): 2.05 Co-ords: DNS Date(s) 02/10/2018 DW

| All      | Stratum Description                                                                                                                                                                                                                  | Depth       | Thickness | Legend                                 | Water   | Sample<br>(Type) |       | Testing |         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|----------------------------------------|---------|------------------|-------|---------|---------|
| =<br>(m) |                                                                                                                                                                                                                                      | (Level)     | Thic      | g                                      | Strikes | (Type)<br>Depth  | Depth | Туре    | Results |
|          | MADE GROUND. Multicoloured dark grey, dark brown and orange very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded of flint and brick. Occasional angular to sub-angular limestone boulders and rootlets. |             | (0.64)    |                                        |         | (D)              |       |         |         |
| -        | Light greyish brown mottled dark grey silty fine SAND. (Tidal Flat Deposits)                                                                                                                                                         | 0.64 (1.41) |           | ×××××××××××××××××××××××××××××××××××××× |         | 0.64<br>0.64     |       |         |         |
| -        | SAND. (Tidal Flat Deposits)                                                                                                                                                                                                          |             | (0.36)    |                                        |         | (B)              |       |         |         |
| 1        | End of Trial Pit at 1.000m                                                                                                                                                                                                           | 1.00 (1.05) |           |                                        |         | 1.00             |       |         |         |
|          |                                                                                                                                                                                                                                      |             |           |                                        |         |                  |       |         |         |





Ground Level (mAOD):

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

DNS

Co-ords:

1.43

## TRIAL PIT LOG

02/10/2018

Trial Pit No. **TP14** 

DW

|          |                              | ww.acstesting.co.uk | ing.co.uk       |                                       | Sheet 1 of 1 |
|----------|------------------------------|---------------------|-----------------|---------------------------------------|--------------|
| Client   | Borough of Poole             | Depth               | Dimensions (m): | <b>Lab Ref.</b> 18-96795              | Hole Type TP |
| Site     | Poole Park Miniature Railway | (m):                | 0.65            | Plant Used: 2t Tracked Mini Excavator | Scale        |
| Location | Poole Park, Poole, BH15 2SF  | 1.00                | 0.4             | 2t Tracked Mini Excavator             | 1:10         |
|          |                              |                     |                 |                                       | Logged By    |

Date(s)

|                   |                                                                                                                                                                                                                                                                                                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)              |                           |       |         | DVV     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|-------|---------|---------|
| All<br>units<br>= | Stratum Description                                                                                                                                                                                                                                                                              | Depth<br>(Level) | Thickness | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water<br>Strikes | Sample<br>(Type)<br>Depth |       | Testing |         |
| (m)               | MADE GROUND. Orange very sandy fine to coarse sub-angular to rounded GRAVEL of flint.                                                                                                                                                                                                            | 0.03 (1.40)      | =         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 0.03                      | Depth | Туре    | Results |
| -                 | MADE GROUND. Greyish brown slightly gravelly silty fine SAND. Gravel is fine to coarse angular to sub-rounded of flint.  MADE GROUND. Dark grey slightly sandy fine to medium angular to sub-rounded GRAVEL of flint and clinker. Frequent angular brick cobbles and occasional metal fragments. | 0.15 (1.28)      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (D)<br>0.15               |       |         |         |
| -<br>-<br>-<br>-  |                                                                                                                                                                                                                                                                                                  |                  | (0.45)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (D)                       |       |         |         |
| -                 | Dark grey mottled dark brown sandy pseudo-<br>fibrous PEAT. Weak organic odour. (Tidal Flat<br>Deposits)                                                                                                                                                                                         | - 0.60 (0.83)    | (0.34)    | and the sale of th |                  | 0.60 (D)                  |       |         |         |
| 1 —               | Light grey mottled dark grey silty fine to coarse SAND. (Poole Formation)  End of Trial Pit at 1.000m                                                                                                                                                                                            | 0.94 (0.49)      |           | allie  |                  | 0.94 (B) 0.94<br>(B) 1.00 |       |         |         |
| -                 |                                                                                                                                                                                                                                                                                                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                           |       |         |         |
| -                 |                                                                                                                                                                                                                                                                                                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                           |       |         |         |
| -                 |                                                                                                                                                                                                                                                                                                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                           |       |         |         |
| -                 |                                                                                                                                                                                                                                                                                                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                           |       |         |         |
| -                 |                                                                                                                                                                                                                                                                                                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                           |       |         |         |
| 2                 |                                                                                                                                                                                                                                                                                                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                           |       |         |         |

Remarks: Trial pit was excavated beside narrow gauge railway. The track is bedded into granular made ground.

Pit Stability:

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Not encountered



## **BOREHOLE LOG**

#### WINDOWLESS SAMPLING

18-96795

Borehole No. **WS14** 

Sheet 1 of 1 Hole Type

Client: Borough of Poole

Technical Notes (where applicable):
Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Densities of granular material based on in situ SPT N-values. Chall describtions in accordance with CRIAL CST4'

Lab. Ref:

Contract: Poole Park Miniature Railway Dando Terrier Mk1 Tracked Dynamic Percussion Rig Location: Poole Park, Poole, BH15 2SF

Drilling Equipment:

Scale 1:25

WLS

Logged By Ground Level (mAOD): 1.43 Co-ords: Date(s): 04/10/2018 Not Surveyed DW

| All<br>units | Stratum Description                                                                                                                                                                                                                                                     | Legend                                    | Water<br>Strikes | Backfill                                                                  | Sample<br>(Type) |          | In:             | Situ Testing |            | Drill    |               |                       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|---------------------------------------------------------------------------|------------------|----------|-----------------|--------------|------------|----------|---------------|-----------------------|
| =<br>(m)     |                                                                                                                                                                                                                                                                         | (Level)                                   | Thickness        | Legenu                                                                    | Strikes          | Dackiiii | (Type)<br>Depth | Depth        | Туре       | F        | Results       | Run                   |
| -            | Refer to TP14 Log                                                                                                                                                                                                                                                       |                                           | (1.00)           |                                                                           |                  |          |                 |              |            |          |               | TP14                  |
| 1            | Medium dense light greyish brown mottled dark grey silty fine SAND. (Tidal Flat Deposits)  Dark grey mottled dark brown sandy pseudo-fibrous PEAT. Moderate organic odour. (Tidal Flat Deposits)  Loose to very loose light grey fine to coarse SAND. (Poole Formation) | 1.00 (0.43)<br>1.14 (0.29)<br>1.33 (0.10) | (1.04)           | XXXXX<br>E shlip; shlip<br>shlip; shlip; shlip;                           |                  |          |                 | 1.00         | SPT(C)     | N=13     | (0.0/0.3.5.5) | (87mm dia)<br>Rec=97% |
| 2            | Very soft to soft light grey mottled brown very sandy organic SILT. Weak organic odour. (Poole Formation)                                                                                                                                                               | - 2.37 (-0.94)                            | (1.04)           | X X X X X X X X X X X X X X X X X X X                                     |                  |          |                 | 3.00         | SPT(C)     |          | (0,0/0,0,0,0) | (87mm dia)<br>Rec=69% |
|              | Medium dense light grey silty fine SAND. (Poole Formation)                                                                                                                                                                                                              | - 3.41 (-1.98)<br>- 4.00 (-2.57)          | (0.59)           | × γης ×<br>× γης ×<br>× γης ×<br>× γης ×<br>× γης ×<br>× γης ×<br>× γης × |                  |          |                 | 4.00         | SPT(C)     |          | (2,4/6,7,8,9) | (87mm dia)<br>Rec=91% |
|              | End of Borehole at 4.000m                                                                                                                                                                                                                                               | 4.00 (*2.57)                              |                  |                                                                           | Groun            | dwater   | Observa         |              | 3 1(0)     | 11-50    | (-,7/07,00,0) |                       |
|              |                                                                                                                                                                                                                                                                         |                                           |                  | -                                                                         | Date             | Stri     |                 |              | me Elapsed | Standing | Rema          | arks                  |
|              |                                                                                                                                                                                                                                                                         |                                           |                  |                                                                           | 4-10-201         |          |                 | .00m         | 20mins     | 0.98m    |               |                       |



#### TRIAL PIT LOG

Trial Pit No.

TP15

Sheet 1 of 1 **Hole Type** Lab Ref. Client Borough of Poole Dimensions (m): 18-96795 Depth TP (m): Plant Used: 0.65 Site Poole Park Miniature Railway Scale 2t Tracked Miniature Excavator 1.00 1:10 Location Poole Park, Poole, BH15 2SF Logged By

Date(s) Co-ords: 02/10/2018 Ground Level (mAOD): 1.19 DNS DW Testing Depth (Level) Water Strikes Stratum Description (m) Depth Туре Results MADE GROUND. Brownish orange very sandy 0.03 fine to coarse sub-angular to sub-rounded GRAVEL of flint. (D) 0.17 (1.02) MADE GROUND. Dark grey slightly sandy fine to medium angular to sub-rounded GRAVEL of flint, brick and clinker. (D) 0.35 (0.84) MADE GROUND. Orangish brown very sandy fine to coarse sub-angular to sub-rounded (D) GRAVEL of flint. 0.47 (0.72) Dark grey mottled brown slightly gravelly silty fine SAND. Gravel is fine to coarse angular to sub-rounded of flint. (Tidal Flat Deposits) (D) 0.67 (0.52) Light grey mottled dark grey silty fine to coarse SAND. (Poole Formation) (0.33)(B) 1.00 (0.19) End of Trial Pit at 1.000m

Remarks: Trial pit was excavated beside narrow gauge railway. Bound macadam was recorded between 0.00-0.03mbgl on western face of trial pit. The track is bedded into granular made ground.

Pit Stability: Stable

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater:



# **BOREHOLE LOG**

WINDOWLESS SAMPLING

Borehole No. WS15

**VVS15**Sheet 1 of 1

Client: Borough of Poole

Lab. Ref: 18-96795

**Drilling Equipment:** 

**Hole Type** WLS+DP

Contract:
Location:

Poole Park Miniature Railway

Poole Park, Poole, BH15 2SF

Dando Terrier Mk1 Tracked Dynamic Percussion Rig

**Scale** 1:25

Ground Level (mAOD): 1.19

Co-ords: DNS

**Date(s):** 05/10/2018

| All               |                                                                                                                                                       | <b>.</b>                          |                        |                                    |                  | Sample   |                 | le s  | Situ Testing       |                   |               |                        |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|------------------------------------|------------------|----------|-----------------|-------|--------------------|-------------------|---------------|------------------------|
| units<br>=<br>(m) | Stratum Description                                                                                                                                   | Depth<br>(Level)                  | Thickness              | Legend                             | Water<br>Strikes | Backfill | (Type)<br>Depth | Depth | Туре               | _                 | Results       | Drill<br>Run           |
| -                 | MADE GROUND. Dark brown slightly gravelly silty fine SAND. Gravel is fine to medium sub-angular to sub-rounded                                        | 0.12 (1.07)                       |                        |                                    |                  |          |                 |       | ,,,                |                   |               |                        |
| -                 | of flint. Frequent wood fragments.  MADE GROUND. Soft greyish brown slightly gravelly sandy SILT. Gravel is fine to medium sub-angular to sub-rounded |                                   |                        |                                    |                  |          |                 |       |                    |                   |               |                        |
| 1 1               | of flint.  MADE GROUND. Greyish brown slightly sandy silty fine to coarse sub-angular to sub-rounded GRAVEL of flint and                              | 0.34 (0.85)                       |                        |                                    |                  |          |                 |       |                    |                   |               | Hand Dug Pit           |
| -<br>-<br>-       | brick.                                                                                                                                                |                                   | (0.43)                 |                                    |                  |          |                 |       |                    |                   |               | Tialid Dug Tit         |
| -                 | Loose dark grey slightly gravelly silty fine to coarse SAND.                                                                                          | 0.77 (0.42)                       |                        |                                    |                  |          |                 |       |                    |                   |               |                        |
| 1 —               | Gravel is fine sub-angular to sub-rounded of flint. (Tidal Flat Deposits)                                                                             |                                   | (0.32)                 | ××××                               |                  |          |                 | 1.00  | SPT(C)             | N=6               | (0,1/2,2,1,1) |                        |
| }                 | Dark grey sandy pseudo-fibrous PEAT. Weak organic odour.<br>(Tidal Flat Deposits)                                                                     | 1.09 (0.10)                       |                        | 2)16, 2)<br>2)16, 2)16,<br>2)      |                  |          |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       | 1.36 (-0.17)                      |                        | alla alla<br>a alla a<br>alla alla |                  |          |                 |       |                    |                   |               |                        |
| =                 | Loose light grey mottled dark grey fine to coarse SAND. (Poole Formation)                                                                             | ,                                 | (0.36)                 |                                    |                  |          |                 |       |                    |                   |               | (87mm dia)<br>Rec=95%  |
| -                 |                                                                                                                                                       | 1.72 (-0.53)                      | O.                     |                                    |                  |          |                 |       |                    |                   |               | Nec-9576               |
| -                 | Very soft to soft grey very sandy SILT. (Poole Formation)                                                                                             | 1.72 ( 0.55)                      |                        | (                                  |                  |          |                 |       |                    |                   |               |                        |
| 2 -               |                                                                                                                                                       |                                   |                        | X                                  |                  |          |                 | 2.00  | SPT(C)             | N=0               | (0,0/0,0,0,0) |                        |
| -                 |                                                                                                                                                       |                                   | (0.85)                 | X                                  |                  |          |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       |                                   |                        | × × ×<br>· × × ×<br>× × ×          |                  |          |                 |       |                    |                   |               |                        |
|                   | Very soft to soft light grey very sandy SILT. (Poole                                                                                                  | 2.57 (-1.38)                      |                        | X                                  |                  |          |                 |       |                    |                   |               | (87mm dia)<br>Rec=100% |
| -                 | Formation)                                                                                                                                            |                                   | (0.43)                 | × × ×<br>× × ×                     |                  |          |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       |                                   | 0)                     | X                                  |                  |          |                 |       |                    |                   |               |                        |
| 3 -               | End of Borehole at 3.000m                                                                                                                             | 3.00 (-1.81)                      |                        | 3.00                               |                  | 0        | 1               | 3.00  | SPT(C)             | N=14              | (0,0/1,4,5,4) |                        |
| -                 |                                                                                                                                                       |                                   |                        | 3.10                               |                  | 0        |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       |                                   |                        | 3.30                               |                  | 1        |                 |       |                    |                   |               |                        |
| 3                 |                                                                                                                                                       |                                   |                        | 3.40                               | m                | 1        |                 |       |                    |                   |               |                        |
| =                 |                                                                                                                                                       |                                   |                        | 3.50                               |                  | 0        |                 |       |                    |                   |               |                        |
| =                 |                                                                                                                                                       |                                   |                        | 3.60                               |                  | 2        |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       |                                   | Dynamic Probe (DPSH-B) | 3.80                               |                  | 3        |                 |       |                    |                   |               |                        |
| _                 |                                                                                                                                                       |                                   | De (DF                 | 3.90                               | m                | 4        |                 |       |                    |                   |               |                        |
| 4 —               |                                                                                                                                                       |                                   | c Prok                 | 4.00                               | m                | 5        |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       |                                   | ynami                  | 4.10                               |                  | 6        |                 |       |                    |                   |               |                        |
| =                 |                                                                                                                                                       |                                   | ا (                    |                                    |                  | 6        |                 |       |                    |                   |               |                        |
| 3                 |                                                                                                                                                       |                                   |                        | 4.40                               |                  | 7        |                 |       |                    |                   |               |                        |
| _                 |                                                                                                                                                       |                                   |                        | 4.50                               |                  | 4        |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       |                                   |                        | 4.60                               |                  | 5        |                 |       |                    |                   |               |                        |
| =                 |                                                                                                                                                       |                                   |                        | 4.70                               |                  | 5        |                 |       |                    |                   |               |                        |
|                   |                                                                                                                                                       |                                   |                        | 4.80                               | m                | 7        |                 |       |                    |                   |               |                        |
| 5 —               |                                                                                                                                                       |                                   |                        | 4.90                               | m                | 11       |                 |       |                    |                   |               |                        |
| -                 |                                                                                                                                                       |                                   |                        | Depth                              |                  | ows      |                 |       | ВІ                 | ows/100mm         |               |                        |
| 1 0               | General Remarks:                                                                                                                                      | oordones with F                   | 0050                   | 20                                 |                  |          | Observati       |       |                    | a 1               | _             |                        |
| Densiti           | nsistency of fine grained soil assessed by hand worked tests in access of granular material, if identified, based on N-Values derived from            | corgance with E<br>om in situ SPT | 5559<br>testir         |                                    | Date<br>5-10-201 |          |                 | -     | e Elapsed<br>Omins | Standing<br>0.78m | Rem           | arks                   |
| 2. Sam            | descriptions, if identified, are in accordance with CIRIA C574<br>pling terminated at 3.00mbgl due to running sands. Dynamic Prob<br>00mbgl.          | oe sampling un                    | derta                  |                                    | - 201            |          |                 |       |                    | 2.37              |               |                        |
|                   |                                                                                                                                                       |                                   |                        |                                    |                  |          |                 |       |                    |                   |               |                        |



# **BOREHOLE LOG**

WINDOWLESS SAMPLING

**WS16** 

Borehole No.

Sheet 1 of 1

Client: Borough of Poole Lab. Ref: 18-97184

**Drilling Equipment:** 

Hole Type WLS+DP

Contract:

Poole Park Miniature Railway

Dando Terrier Mk2 Tracked Dynamic Perussion Rig

Scale 1:25

Poole Park, Poole, BH15 2SF Location:

| BOURD DIACADAM Control promoted data systym variant with the control of the contr | Grou         | und Level (mAOD): 1.25 Co-ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ds: [                                     | ONS      |           |       | Date(      | <b>s):</b> 19/10 | 0/2018           |             |                | <b>jed By</b><br>)W   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|-----------|-------|------------|------------------|------------------|-------------|----------------|-----------------------|
| BOULD GACAGAM  Mode Gardinal but these mediated day gray vary party  Mode GACAGAM  Better and rescedam  Mode GACAGAM  Garden is free to covere sub-angular to sub-counsed or first.  GACAGAM  Garden is free to covere sub-angular to sub-counsed or first.  GACAGAM  Garden is free to covere sub-angular to sub-counsed or first.  GACAGAM  Garden is free to covere sub-angular to sub-counsed or first.  GACAGAM  GACAGAM  Better and rescedam  Mode GACAGAM  Better and rescedam  Mode GACAGAM  Mode GACAGAM  Better and rescedam  Mode GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-angular to sub-counsed or first.  GACAGAM  Better and rescent sub-counsed angular t | All<br>units | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | kness    |           |       |            |                  | In S             | itu Testing |                |                       |
| MADE GROUND. Date brown method day gry very parky in the success of the course of the  | =<br>(m)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Level)                                   | 声        | Str       | ikes  |            |                  | Type             | F           | Results        | Run                   |
| Grand in the to course sub-normal country of the grands and sub-normal country of the grands and assessed by hard worked feel in accordance with 85530 nailes of grands reducing access and seeds on Novikusa deliver from in sub Sping and the sub-normal country of the grands reducing access and seeds on Novikusa deliver from in sub Sping and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing access and the sub-normal country of the grands reducing a sub-normal country of the grands reducing access and the sub-normal country of the grands reducing a sub-normal country of the grands and the sub-normal country of the grands reducing a sub-normal country of the grands and the sub-normal country of the grands reducing a sub-normal country of the grands redu |              | MADE GROUND. Dark brown mottled dark grey very sandy fine to coarse angular to sub -rounded GRAVEL of flint, limestone and macadam.  MADE GROUND. Light brown gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to rounded of flint and clinker.  MADE GROUND. Dark grey mottled light brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded of flint and clinker. Rare pockets of firm light grey very sandy silt.  Dark greyish brown gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Denosits) | 0.09 (1.16)<br>0.21 (1.04)<br>0.32 (0.93) | (0.63)   |           | •     |            |                  |                  |             |                | Core Hand Dug Pit     |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 -          | Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  Medium dense light grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)                                                                                                                                                                                                                                                                                                                                                                                                |                                           |          |           | Z     |            | 1.00             | SPT(C)           | N=19        | (3,4/3,5,6,5)  |                       |
| Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of groundwater Disputs of groundwater Disputs of groundwater Street Containing of groundwater street inferred at the deciration of the grained at 2 contends of the training and all grainformed forms and groundwater strike inferred at the deciration of groundwater strike inferred at the containing and all grainformed forms and groundwater strike inferred at the containing and all grainformed forms and groundwater strike inferred at the containing and all grainformed forms.   Containing the grainformed forms and groundwater strike inferred at the containing and groundwater str   | 2 —          | brown fine to coarse SAND. (Poole Formation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | (0.83)   |           |       |            | 2.00             | SPT(C)           | N=38        | (1,4/4,9,9,16) | (87mm dia)<br>Rec=95% |
| Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of fine grained at all essessed by hand worked tests in accordance with BISS930.   Containing of groundwater Disputs of groundwater Disputs of groundwater Street Containing of groundwater street inferred at the deciration of the grained at 2 contends of the training and all grainformed forms and groundwater strike inferred at the deciration of groundwater strike inferred at the containing and all grainformed forms and groundwater strike inferred at the containing and all grainformed forms and groundwater strike inferred at the containing and all grainformed forms.   Containing the grainformed forms and groundwater strike inferred at the containing and groundwater str   | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| 240m   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | End of Borehole at 2.200m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20 (-0.95)                              |          | 2.20m     | 2     | Y1         |                  |                  | 1           |                |                       |
| 240m   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | -         |       | H          |                  |                  |             |                |                       |
| 2.50m   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | l         |       |            |                  |                  |             |                |                       |
| Consistercy of fine grained soil assessed by hand worked tests in accordance with BS5930. The state of granular material, if identified, sare in accordance with CIRIA C574 Asampling terminated at 2 Orbing by the orbin in stu SPT testings als descriptions, if identified, sare in accordance with CIRIA C574 Asampling terminated at 2 Orbing by the orbin in stu SPT testings als descriptions, if identified, sare in accordance with CIRIA C574 Asampling terminated at 2 Orbing by the orbin in stu SPT testings als descriptions, if identified, sare in accordance with CIRIA C574 Asampling terminated at 2 Orbing by the orbin in stu SPT testings als descriptions, if identified, sare in accordance with CIRIA C574 Asampling terminated at 2 Orbing by the orbin in stu SPT testings als descriptions, if identified, sare in accordance with CIRIA C574 Asampling terminated at 2 Orbing by the orbin in stu SPT testings and the orbin in stu SPT testings are consistency of the grained at 3 Orbing by the orbin in stu SPT testings and the orbin in stu SPT testings are consistency of the grained at 3 Orbing by the orbin in stu SPT testings are consistency of the grained at 3 Orbing by the orbin in stu SPT testings are consistency of the grained at 3 Orbing by the orbin in stu SPT testings are consistency of the grained at 3 Orbing by the orbin in stu SPT testings are consistency of the grained at 3 Orbing by the orbin in stu SPT testings are consistency of the grained at 3 Orbing by the orbin in stu SPT testings are consistency orbin at the orbin in stu SPT testings are consistency orbin at the orbin in stu SPT testings are consistency orbin at the orbin a   | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | -         |       |            |                  |                  |             |                |                       |
| Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, malked of granular material, if identified, based on N-Values derived from in situ SPT testing alk descriptions, if identified, are in accordance with CIRIA C574   Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, malked of granular material, if identified, based on N-Values derived from in situ SPT testing alk descriptions, if identified, are in accordance with CIRIA C574   Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, malked of granular material, if identified, based on N-Values derived from in situ SPT testing alk descriptions, if identified, are in accordance with CIRIA C574   Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, malked or granular material, if identified, based on N-Values derived from in situ SPT testing alk descriptions, if identified, are in accordance with CIRIA C574   Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked tests in accordance with BS5930, make a consistency of fine grained soil assessed by hand worked t   | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | -         |       |            |                  |                  |             |                |                       |
| Depth (m)   Blows   Blows/100mm   Ceneral Remarks:   Consistency of fine grained soil assessed by hard worked tests in accordance with BS5930.   Sampling terminated at all 200mbg flue tor nurning sails. descriptions, if identified, are in accordance with CIRIA C574   Sampling terminated at all 200mbg flue tor nurning sails. descriptions, if identified, are in accordance with CIRIA C574   Sampling terminated at all 200mbg flue tor nurning sails. Sase of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | -         |       |            |                  |                  |             |                |                       |
| Depth (m)   Blows   Blows/100mm   Blows/10   | =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | -         |       |            |                  |                  |             |                |                       |
| 3.40m 5 3.50m 6 3.50m 8 3.70m 5 3.80m 11 3.90m 1 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | <u>@</u> | 2.80m     | 6     |            |                  |                  |             |                |                       |
| 3.40m 5 3.50m 6 3.50m 8 3.70m 5 3.80m 11 3.90m 1 | 3 —          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | l PS     | 2.90m     | 5     |            |                  |                  |             |                |                       |
| 3.40m 5 3.50m 6 3.50m 8 3.70m 5 3.80m 11 3.90m 1 | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | pe (C    | 3.00m     | 4     |            |                  |                  |             |                |                       |
| 3.40m 5 3.50m 6 3.50m 8 3.70m 5 3.80m 11 3.90m 1 | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | Pro      | 3.10m     | 5     |            |                  |                  |             |                |                       |
| 3.40m 5 3.50m 6 3.50m 8 3.70m 5 3.80m 11 3.90m 1 | =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | amic     | 3.20m     | 9     |            |                  |                  |             |                |                       |
| 3.50m 6 3.60m 8 3.70m 5 3.80m 11 3.90m 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | Dyn      | 3.30m     | 8     |            |                  |                  |             |                |                       |
| 3.60m 8 3.70m 5 3.80m 11 3.90m 111  Depth (m) Blows Blows/100mm  General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. snitles of granular material, if identified, based on N-Values derived from in situ SPT testing. allk descriptions, if identified, are in accordance with CIRIA C574 Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | 3.40m     | 5     |            |                  |                  |             |                |                       |
| 3.70m 5  3.80m 11  3.90m 11  Blows  General Remarks:  Groundwater Observations:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. nsities of granular material, if identified, based on N-Values derived from in situ SPT testing. alk descriptions, if identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | 3.50m     | 6     |            |                  |                  |             |                |                       |
| 3.70m 5  3.80m 11  3.90m 11  Blows  General Remarks:  Groundwater Observations:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. nsities of granular material, if identified, based on N-Values derived from in situ SPT testing. alk descriptions, if identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | l         | 8     |            |                  |                  |             |                |                       |
| 3.80m 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | -         |       |            |                  |                  |             |                |                       |
| 3.90m 11  Depth (m) Blows Blows/100mm  General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. alk descriptions, if identified, are in accordance with CIRIA C574 Sampling terminated at 2.00mbg/ due to unning sands. Base of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | -         |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.  Insities of granular material, if identified, based on N-Values derived from in situ SPT testing.  Its label to the control of the contro | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | l         |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 —          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          | 0.00      |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from    Depth (m)   Blows   Blows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 —          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  |                  |             |                |                       |
| General Remarks:  Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. ensities of granular material, if identified, based on N-Values derived from in situ SPT testing. enalt descriptions, if identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 1        | Depth (m) | Blows | 1          |                  | Blo              | ws/100mm    |                |                       |
| Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Insities of granular material, if identified, based on N-Values derived from in situ SPT testing. Inalk descriptions, if identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | General Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                         | 1        |           |       | er Observ  | ations:          | 510              |             |                |                       |
| ensities of granular material, if identified, based on N-Values derived from in situ SPT testing. In identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from SPT testing. In identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from SPT testing. In identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from SPT testing. In identified, are in accordance with CIRIA C574  Sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from In identified the identified terminated at 2.00mbgl due to running sands. Base of final sand layer inferred due to be in accordance with CIRIA C574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I. Con       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       | ne Flanced | Standing         | Rom              | arks        |                |                       |
| due to being struck during sampling terminated at 2.00mbgl due to running sands. Base of final sand layer inferred from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Densitie     | es of granular material, if identified, based on N-Values derived fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |          |           | -     |            | -                |                  |             |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |           |       |            |                  | due to being str |             |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                         | 3.       |           |       |            |                  |                  |             | 1.00M SP1.     |                       |



Contract:

Ground Level (mAOD):

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

Co-ords:

DNS

## **BOREHOLE LOG**

WINDOWLESS SAMPLING

18-97184

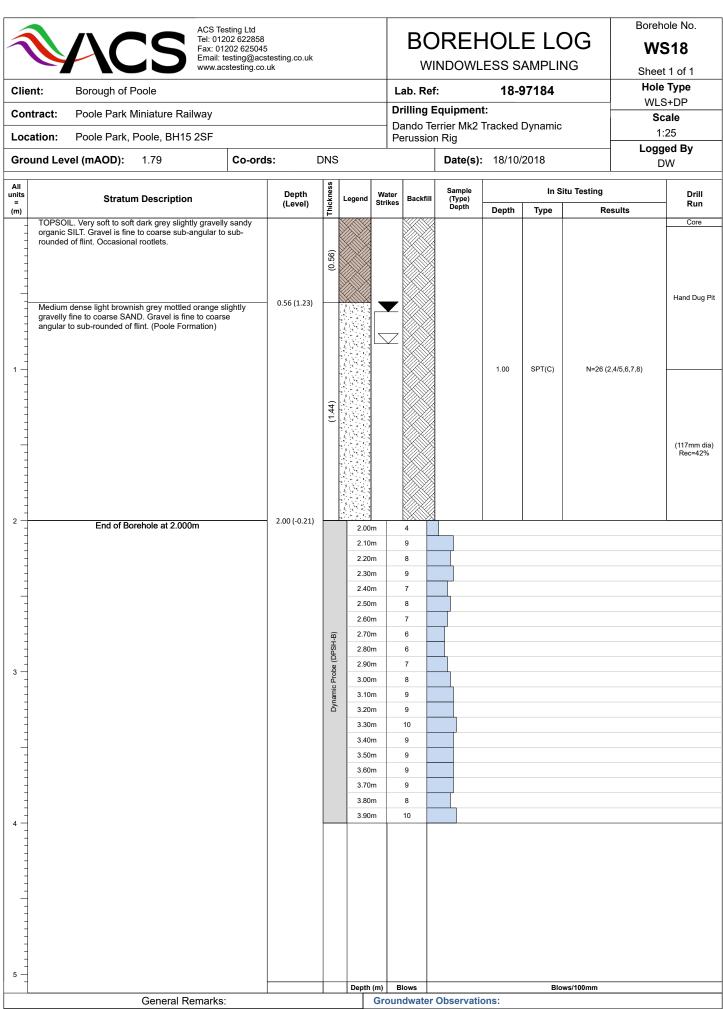
Borehole No. **WS17** 

Sheet 1 of 1

Client: Lab. Ref: Borough of Poole **Drilling Equipment:**  Hole Type WLS+DP

Poole Park Miniature Railway Poole Park, Poole, BH15 2SF

1.44


Dando Terrier Mk2 Tracked Dynamic Perussion Rig

Scale 1:25

Location:

Date(s): 18/10/2018

| Stratum Description                                                                                                                                                                                                                             | Depth<br>(Level)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water<br>Strikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample<br>(Type)<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Situ Testin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drill<br>Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MADE GROUND. Greyish brown gravelly silty fine to coarse                                                                                                                                                                                        | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 두                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Бериі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint and clinker.  Loose dark brown mottled brownish grey gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits) | 0.37 (1.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hand Dug Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPT(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 (0,0/0,1,2,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dark brown sandy pseudo-fibrous PEAT.                                                                                                                                                                                                           | 1.33 (0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ××××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Firm dark grey very sandy organic SILT. Strong organic odour. (Tidal Flat Deposits)                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (87mm dia)<br>Rec=95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)                                                                                                            | 1.76 (-0.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPT(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 (3,4/5,5,4,6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Medium dense light grey slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)                                                                                                  | 2.19 (-0.75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (87mm dia)<br>Rec=35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| End of Borobole at 3 000m                                                                                                                                                                                                                       | 3.00 (-1.56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Little of Boreliole at 3.000m                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DPSH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.00m<br>3.10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.20m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | namic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.30m<br>3.40m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.50m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.90m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Denth (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n) Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lows/100mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| General Remarks:                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iowai iuuiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sistency of fine grained soil assessed by hand worked tests in acc<br>s of granular material, if identified, based on N-Values derived fro<br>escriptions, if identified, are in accordance with CIRIA C574                                     | cordance with E<br>om in situ SPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3S59:<br>testin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date<br>10-201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | asing Tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne Elapsed<br>20mins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standing<br>1.05m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                 | Loose dark brown mottled brownish grey gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  Bark brown sandy pseudo-fibrous PEAT.  Firm dark grey very sandy organic SILT. Strong organic odour. (Tidal Flat Deposits)  Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  Medium dense light grey slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  End of Borehole at 3.000m  End of Borehole at 3.000m | MADE GROUND. Greyish brown gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint and clinker.  Loose dark brown mottled brownish grey gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  1.33 (0.11)  Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  Medium dense light grey slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  End of Borehole at 3.000m  General Remarks:  Seneral Remarks:  Sistency of fine grained soil assessed by hand worked tests in accordance with the sof granular material, if identified, based on N-Values derived from in situ SPT | MADE GROUND. Greyish brown gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)    Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)    Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)    Medium dense light grey slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)    Medium dense light grey slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)    Medium dense light grey slightly gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)    September   September | MADE GROUND. Greysh brown gravelly silty fine to coarse SAND. Grave is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  Find of Borehole at 3.000m  Commendation of flint. (Poole Formation)  Angular to sub-rounded of flint. (Poole Formation)  Find of Borehole at 3.000m  Commendation of flint. (Poole Formation)  General Remarks:  Commendation of flint and clinker.  Commendation of flint and clinker.  Commendation of flint. (Poole Formation)  Commen | MADE GROUND. Greyish brown gravelly silty fine to coarse SAND. Grave is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  Losae dark brown mottled brownish grey gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  ### brown sandy pseudo-fibrous FEAT.  Firm dark grey very sandy organic SiLT. Strong organic odour. (Tidal Flat Deposits)  ### brown sandy pseudo-fibrous FEAT.  Firm dark grey very sandy organic SiLT. Strong organic odour. (Tidal Flat Deposits)  ### brown sandy pseudo-fibrous FEAT.  ### brown s | MADE GROUND. Greyish brown gravelly stilly fine to coarse SAND. Grave is fine to coarse sub-angular to sub-rounded of flint and clinker.  Loose dark brown mottled brownish grey gravely stilly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  Medium dense dark grey gravely fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  Medium dense dark grey gravely fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  End of Borehole at 3.000m  End of Borehole at 3.000m  Sandom a 3.00 (-1.56)  Depth (m) Blows  General Remarks:  General Remarks:  General Remarks:  General Remarks:  General Remarks:  Groundwater  Istency of fine grained soil assessed by hand worked tests in accordance with BSS90.  Sof granular material, if identified, ased on N-Values derived from in situ SPT testing. | MADE GROUND. Grayles thorour gravely saily fine to coarse SAND. Grave in fine to coarse sub-angular to sub-rounded of flint and clinker.  Loose dark brown motited brownish grey gravelly saily fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Tidal Flat Deposits)  1.33 (0.11)  Medium dense dark grey very sandy organic SILT. Strong organic odour. (Tidal Flat Deposits)  1.78 (-0.32)  Medium dense dark grey gravelly fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of flint. (Poole Formation)  End of Borehole at 3.000m  End of Borehole at 3.000m  3.00 (-1.56)  End of Borehole at 3.000m  Ceneral Remarks:  General Remarks: | MADE GROUND. Creysh brown gravely silly fine to coarse SAND. Grave his fine to coarse sub-angular to sub-rounded of lint and clinter.  Loose dark brown motified brownish grey gravely silly fine to coarse SAND. Conveil is fine to coarse sub-angular to sub-rounded of lint. (Tibal Flat Deposits)  Madium dense dark grey years andy organic SLT. Strong organic odour. (Tibal Flat Deposits)  Medium dense dark grey years gravely fine to coarse SAND. Gravel is fine to coarse sub-angular to sub-rounded of fint. (Poole Formation)  End of Borehole at 3,000m  End of Borehole at 3,000m  End of Borehole at 3,000m  September 1, 120, 120, 120, 120, 120, 120, 120, 1 | MADE GROUND. Creyels how to course sub-angular to sub-rounded of fint and cinitizer.  Licace dark irrown motified brownish grey gravely althy fine to course sub-angular to sub-rounded of fint. (Tidal Flat Depoets)  Licace dark irrown motified brownish grey gravely althy fine to courses SAND. Grevel is fine to coarse sub-angular to sub-rounded of fint. (Tidal Flat Depoets)  Licace dark irrown motified brownish grey gravely fine to coarse coarse SAND. Grevel is fine to coarse sub-angular to sub-rounded of fint. (Tidal Flat Depoets)  Licace dark irrown motified brownish grey gravely fine to coarse sub-angular to sub-rounded of fint. (Floal Flat Depoets)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse SAND. (Poole Formation)  Licace dark grey gravely fine to coarse gravely gravely gravely fine to coarse gravely grave | MADC ER(CNUND, Cereylar brown gravelly sith fine to coarse sAND. Gravel is fine to coarse sub-angular to sub-rounded of film and claikes.  Lose dark brown motitud browning year gravelly sith fine to coarse sAND. Gravel is fine to coarse sub-angular to sub-rounded of film. (Tital Flat Deposits)  we boars sardy associations FEAT.  Firm dark grey years analty gravelly fine to coarse SAND. Cravel is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Bedium dense dark grey gravelly fine to coarse SAND. Cravel is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  End of Borehole at 3.000m  End of Borehole at 3.000m  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  End of Borehole at 3.000m  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  End of Borehole at 3.000m  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  End of Borehole at 3.000m  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-rounded of film. (Poole Formation)  Canal is fine to coarse sub-angular to sub-ro | MADC Greef is the to course sub-engular to sub-counsed of final relationship of the total distance.  Locate dark from motital brownish grey gravely gills fine to course sub-engular to sub-counsed of final relationship of the total distance of |



# 1. Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Densities of granular material, if identified, based on N-Values derived from in situ SPT testing. Chalk descriptions, if identified, are in accordance with CIRIA C574 2. Sampling terminated at 2.00mbgl due to running sands. Dynamic Probe testing undertaken from 2.00mbgl.

Remarks



Contract:

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

## **BOREHOLE LOG**

WINDOWLESS SAMPLING

Borehole No. **WS19** 

Sheet 1 of 1

Client: Lab. Ref: 18-97184 Borough of Poole **Drilling Equipment:** 

**Hole Type** WLS+DP

Poole Park Miniature Railway

Scale 1:25

Location: Poole Park, Poole, BH15 2SF Dando Terrier Mk2 Tracked Dynamic Perussion Rig

Logged By Ground Level (mAOD): 1.62 Co-ords: DNS Date(s): 19/10/2018 DW

| 1                 |                                                                                                                                           | 1                                  | I (n )                 |                        |                  |          |                           |        |            |              | I                             | 7 0                    |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|------------------------|------------------|----------|---------------------------|--------|------------|--------------|-------------------------------|------------------------|
| All<br>units<br>= | Stratum Description                                                                                                                       | Depth<br>(Level)                   | Thickness              | Legend                 | Water<br>Strikes | Backfill | Sample<br>(Type)<br>Depth |        |            | Situ Testing |                               | Drill<br>Run           |
| (m)               | TOPSOIL. Dark greyish brown slightly gravelly silty fine to                                                                               |                                    | F                      | /                      |                  | X//XX//  | 2001                      | Depth  | 1 Type     |              | Results                       | 1                      |
| 3                 | coarse SAND. Gravel is fine to coarse sub-angular to sub-                                                                                 | 0.45 (4.45)                        |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 7                 | rounded of flint. Frequent rootlets.  Light brownish grey mottled dark brown silty organic fine to                                        | 0.16 (1.46)                        |                        | galla X                |                  |          |                           |        |            |              |                               |                        |
| 7                 | coarse SAND. (Tidal Flat Deposits)                                                                                                        |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 1                 | Dark brown slightly sandy pseudo-fibrous PEAT. (Tidal Flat                                                                                | 0.39 (1.23)                        | $\mathbf{H}$           |                        |                  |          |                           |        |            |              |                               |                        |
| 4                 | Deposits)                                                                                                                                 |                                    |                        | s alto alto            |                  |          |                           |        |            |              |                               |                        |
| 1                 |                                                                                                                                           |                                    | .51)                   | s alts al<br>alts alts |                  |          |                           |        |            |              |                               | Hand Dug Pit           |
| 1                 |                                                                                                                                           |                                    | (0.5                   | s siles si             |                  |          |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        | allo allo<br>allo al   |                  |          |                           |        |            |              |                               |                        |
| 1                 |                                                                                                                                           | 0.90 (0.72)                        |                        | શાંદ શાંદ              |                  |          |                           |        |            |              |                               |                        |
| 1 —               | Medium dense light brownish grey slightly gravelly silty fine to coarse SAND. Gravel is fine to coarse sub-angular to                     | 0.50 (0.72)                        |                        |                        |                  |          |                           |        |            |              |                               |                        |
| · -               | sub-rounded of flint. (Poole Formation)                                                                                                   |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| -                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           | 1.20   | SPT(C)     | N=C          | 2 (2 2/2 2 2 2)               |                        |
| -                 |                                                                                                                                           |                                    |                        |                        | $\overline{}$    |          |                           | 1.20   | 3P1(C)     | IN-S         | 9 (2,2/2,2,2,3)               |                        |
| 4                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 1                 |                                                                                                                                           |                                    | (1.10)                 |                        |                  |          |                           |        |            |              |                               |                        |
| _                 |                                                                                                                                           |                                    | =                      |                        |                  |          |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               | (87mm dia)<br>Rec=100% |
| 1                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               | 1100 10070             |
| 1                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| -                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 2                 | End of Borehole at 2.000m                                                                                                                 | 2.00 (-0.38)                       |                        | 1 000                  | .                | 0        |                           |        |            |              |                               |                        |
| 7                 | End of Boronolo at 2.000m                                                                                                                 |                                    |                        | 2.00n                  |                  |          |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    |                        | 2.10r                  |                  | 3        |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    |                        | 2.20r                  |                  | 3        |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        | 2.30n                  | n                | 4        |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        | 2.40n                  | n                | 4        |                           |        |            |              |                               |                        |
| -                 |                                                                                                                                           |                                    |                        | 2.50n                  | n                | 4        |                           |        |            |              |                               |                        |
| =                 |                                                                                                                                           |                                    |                        | 2.60n                  | n                | 5        |                           |        |            |              |                               |                        |
| -                 |                                                                                                                                           |                                    | <b>φ</b>               | 2.70r                  | m                | 5        |                           |        |            |              |                               |                        |
| -                 |                                                                                                                                           |                                    | Dynamic Probe (DPSH-B) | 2.80n                  | n                | 6        |                           |        |            |              |                               |                        |
| _ F               |                                                                                                                                           |                                    | <u>Q</u>               | 2.90n                  | n                | 5        |                           |        |            |              |                               |                        |
| 3 —               |                                                                                                                                           |                                    | Prof                   | 3.00n                  | n                | 6        |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    | amic                   | 3.10n                  | n                | 7        |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    | D O                    | 3.20n                  | n                | 5        | T                         |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        | 3.30r                  | n                | 5        |                           |        |            |              |                               |                        |
| 1                 |                                                                                                                                           |                                    |                        | 3.40n                  |                  | 9        |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        | 3.50n                  |                  | 7        |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        | 3.60n                  |                  | 7        |                           |        |            |              |                               |                        |
| -                 |                                                                                                                                           |                                    |                        | 3.70n                  |                  | 7        |                           |        |            |              |                               |                        |
| +                 |                                                                                                                                           |                                    |                        | -                      |                  | 8        |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    |                        | 3.80n                  |                  |          |                           |        |            |              |                               |                        |
| 4 —               |                                                                                                                                           |                                    |                        | 3.90n                  | n                | 11       |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 1                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| $\exists$         |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 1                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
|                   |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 7                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| #                 |                                                                                                                                           |                                    |                        |                        |                  |          |                           |        |            |              |                               |                        |
| 5 —               |                                                                                                                                           |                                    |                        | -                      |                  |          |                           |        |            |              |                               |                        |
|                   | Canaral Barrarilar                                                                                                                        |                                    | 1                      | Depth (                |                  | lows     | Observe                   | tions: | Е          | lows/100mm   |                               |                        |
|                   | General Remarks:                                                                                                                          |                                    | 20500                  |                        |                  |          | Observa                   |        |            |              | _                             |                        |
| . Cons            | sistency of fine grained soil assessed by hand worked tests in ac<br>is of granular material, if identified, based on N-Values derived fi | corgance with I<br>rom in situ SPT | ວວວ93<br>testino       |                        | Date             | Str      |                           | -      | me Elapsed | -            |                               | arks                   |
| Jensitie          |                                                                                                                                           | · ·                                |                        | - 119                  | 9-10-201         | o   1.3  | 0m 0                      | ).00m  | 20mins     | 0.93m        | Groundwater s                 | итке ппепгеа           |
| Chalk de          | escriptions, if identified, are in accordance with CIRIA C574<br>bling terminated at 2.00mbgl due to running sands. Dynamic Pro           | ha tarti                           | uta I.                 |                        |                  |          |                           |        |            |              | due to being st<br>1.00m SPT. | ruck during            |

Poole Park Miniature Railway – Borough of Poole Factual Report

# **APPENDIX B**

## **Geochemical Test Results**

ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset **BH16 6LE** 



#### **Certificate of Analysis**

Certificate Number: 18-09563-Issue 1-Page: 1

**GEO RESULTS** Report Fao:

Site Address: Poole Park Minature Railway

**Client Order No:** 18-97284

Date of Sampling: 01/10/2018

**Date Received:** 15/10/2018

15/11/2018 **Report Date:** 

Please find your certificates of test attached for your samples received in the laboratory on 15/10/2018 under our laboratory reference 18-09563.

Remarks:

None

Results reviewed by:

Test Certificates approved by:

David Redfern Technical Supervisor

Any opinions or interpretations indicated are outside the scope of our UKAS accreditation. This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis. Excel copies of reports are valid only when accompanied by this PDF certificate. Client's Sample Description / ACS Material Description are noted for reference only.

**Head Office** Registered Office

Unit 14B Unit 14B Blackhill Road West

Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628642 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry



Certificate No. 18-09563-Issue 1-Page: 2
Site Address Poole Park Minature Railway



ACSE Sample Number Sample ID 38167 426801 - 18-97284 38169

Clients Sample Ref.

01 - 18-97284 426802 - 18-97284

426803 - 18-97284

Location / Sample Depth (m)

0.23-0.42m

TP02

Date Sampled

01/10/2018

TP01

0.65-1.00m -- -----01/10/2018

TP01

0.21-0.63m -----01/10/2018

Time Sampled Sample deviating codes Client's Sample Description

ef

**Brown sandy GRAVEL** 

ef ef

-----

**ACS Testing Material Description** 

GRAVEL

Grey silty SAND

Brown sandy GRAVEL

ACSE Material Description (Principal Matrix - As Received)

SAND

GRAVEL

| Determination              | Units | Method      | Prepared As | Result | AS  | Result | AS  | Result | AS  |
|----------------------------|-------|-------------|-------------|--------|-----|--------|-----|--------|-----|
| Anions                     |       |             |             |        |     |        |     |        |     |
| Water Soluble Sulphate     | mg/l  | MT/ACSE/204 | AD          |        |     | 166    | *f  |        |     |
| BTEX                       |       |             |             |        |     |        |     |        |     |
| Benzene                    | mg/kg | MT/ACSE/101 | AR          | 0.12   | *ef |        |     | 0.13   | *ef |
| Ethylbenzene               | mg/kg | MT/ACSE/101 | AR          | < 0.10 | *ef |        |     | < 0.10 | *ef |
| m+p-xylene                 | mg/kg | MT/ACSE/101 | AR          | < 0.19 | *ef |        |     | < 0.19 | *ef |
| o-xylene                   | mg/kg | MT/ACSE/101 | AR          | < 0.10 | *ef |        |     | < 0.10 | *ef |
| Toluene                    | mg/kg | MT/ACSE/101 | AR          | 0.12   | *ef |        |     | 0.11   | *ef |
| Total BTEX                 | mg/kg | MT/ACSE/101 | AR          | < 0.60 | *ef |        |     | < 0.60 | *ef |
| Carbon                     |       |             |             |        |     |        |     |        |     |
| Soil Organic Matter        | %     | MT/ACSE/102 | AR          | 2.70   |     |        |     | 3.17   |     |
| FOC                        | %     | MT/ACSE/102 | AR          | 0.0156 |     |        |     | 0.0184 |     |
| TOC (Total Organic Carbon) | %     | MT/ACSE/102 | AR          | 1.55   | *   |        |     | 1.82   | *   |
| Loss on Ignition           |       |             |             |        |     |        |     |        |     |
| Loss on Ignition (440 °C)  | %     | MT/ACSE/302 | AD          | 2.1    | *f  |        |     | 2.7    | *f  |
| Metals (Soil)              |       |             |             |        |     |        |     |        |     |
| Arsenic                    | mg/kg | MT/ACSE/201 | AD          | 11.9   | *   |        |     | 17.7   |     |
| Cadmium                    | mg/kg | MT/ACSE/201 | AD          | < 1.00 | *   |        |     | < 1.00 |     |
| Chromium                   | mg/kg | MT/ACSE/201 | AD          | 40.8   | *   |        |     | 51.6   |     |
| Copper                     | mg/kg | MT/ACSE/201 | AD          | 23.1   | *   |        |     | 18.4   |     |
| Mercury                    | mg/kg | MT/ACSE/202 | AD          | 0.07   | *   |        |     | 0.10   |     |
| Nickel                     | mg/kg | MT/ACSE/201 | AD          | 12.1   | *   |        |     | 11.4   |     |
| Lead                       | mg/kg | MT/ACSE/201 | AD          | 89.6   | *   |        |     | 73.9   |     |
| Selenium                   | mg/kg | MT/ACSE/201 | AD          | < 6.00 | *   |        |     | < 6.00 |     |
| Zinc                       | mg/kg | MT/ACSE/201 |             | 289    | *   |        |     | 70.4   |     |
| Chromium III               | mg/kg | NAM/ACSE/X1 |             | 40.8   |     |        |     | 51.6   |     |
| Chromium Hexavalent        | mg/kg | NAM/ACSE/X1 | 1 AD        | < 1.00 | f   |        |     | < 1.00 | f   |
| Petroleum Hydrocarbons     |       |             |             |        |     |        |     |        |     |
| Total TPH (C10-C40)        | mg/kg | MT/ACSE/105 | AR          | 363    | *   |        |     | 1000   | *   |
| pH and Conductivity        |       |             |             |        |     |        |     |        |     |
| pH (@ 20 ℃)                | units | MT/ACSE/301 | AD          | 10.6   | *ef | 8.2    | *ef | 10.6   | *ef |
| Poly Aromatic Hydrocarbons |       |             |             |        |     |        |     |        |     |
| Naphthalene                | mg/kg | MT/ACSE/106 | AD          | 0.14   | *f  |        |     | 0.22   | *f  |
| Acenaphthylene             | mg/kg | MT/ACSE/106 | AD          | 0.75   | *f  |        |     | 1.43   | *f  |
| Acenaphthene               | mg/kg | MT/ACSE/106 | AD          | 0.11   | *f  |        |     | 0.34   | *f  |
| Fluorene                   | mg/kg | MT/ACSE/106 | AD          | 0.19   | *f  |        |     | 0.43   | *f  |
| Phenanthrene               | mg/kg | MT/ACSE/106 |             | 0.71   | *f  |        |     | 2.36   | *f  |
| Anthracene                 | mg/kg | MT/ACSE/106 |             | 0.85   | *f  |        |     | 2.22   | *f  |
| Fluoranthene               | mg/kg | MT/ACSE/106 |             | 2.69   | *f  |        |     | 7.78   | *f  |
| Pyrene                     | mg/kg | MT/ACSE/106 |             | 3.16   | *f  |        |     | 7.90   | *f  |
| Benzo (a) anthracene       | mg/kg | MT/ACSE/106 |             | 2.63   | *f  |        |     | 4.93   | *f  |
| Chrysene                   | mg/kg | MT/ACSE/106 |             | 2.71   | *f  |        |     | 4.55   | *f  |
| Benzo (b) fluoranthene     | mg/kg | MT/ACSE/106 |             | 5.19   | *f  |        |     | 7.63   | *f  |
| Benzo (k) fluoranthene     | mg/kg | MT/ACSE/106 | AD          | 1.64   | *f  |        |     | 2.17   | *f  |

Head Office Unit 14B

Tel 01202 628680

Fax 01202 628680

Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park Poole Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065 Quality Testing & Materials Consultancy to the Construction Industry

Page: 2 of 14

Certificate No. 18-09563-Issue 1-Page: 3
Site Address Poole Park Minature Railway



**ACSE Sample Number** 38167 Sample ID 426801 - 18-97284 426802 - 18-97284 426803 - 18-97284 Clients Sample Ref. TP01 TP01 TP02 Location / Sample Depth (m) 0.23-0.42m 0.65-1.00m 0.21-0.63m 01/10/2018 01/10/2018 01/10/2018 **Date Sampled Time Sampled** Sample deviating codes ef Client's Sample Description **ACS Testing Material Description Brown sandy GRAVEL Grey silty SAND Brown sandy GRAVEL** GRAVEL SAND **GRAVEL** ACSE Material Description (Principal Matrix - As Received)

| Determination                    | Units | Method      | Prepared As | Result | AS | Result | AS | Result | AS |
|----------------------------------|-------|-------------|-------------|--------|----|--------|----|--------|----|
| Benzo (a) pyrene                 | mg/kg | MT/ACSE/106 | S AD        | 4.04   | *f |        |    | 6.20   | *f |
| Indeno (1 2 3-CD) pyrene         | mg/kg | MT/ACSE/106 | S AD        | 3.60   | *f |        |    | 4.38   | *f |
| Dibenzo(a h)anthracene           | mg/kg | MT/ACSE/106 | S AD        | 0.98   | *f |        |    | 1.94   | *f |
| Benzo(g h i)perylene             | mg/kg | MT/ACSE/106 | S AD        | 3.88   | *f |        |    | 4.57   | *f |
| Total PAH                        | mg/kg | MT/ACSE/106 | S AD        | 33.3   | *f |        |    | 59.0   | *f |
| Polychlorinated Biphenyls (PCBs) |       |             |             |        |    |        |    |        |    |
| PCB (7 Congeners)                | mg/kg | IHP-GCMS    | AD          |        |    |        |    |        |    |
| PCB (7 Congeners)                | mg/kg | MT/ACSE/104 | AD AD       | < 1.00 | *  |        |    | < 1.00 | *  |
| Speciated BTEX                   |       |             |             |        |    |        |    |        |    |
| MTBE                             | mg/kg | NAM/ACSE/X1 | 2 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Hexane                           | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Heptane                          | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Octane                           | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Benzene                          | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Toluene                          | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Ethylbenzene                     | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| m+p-xylene                       | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| o-xylene                         | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Total BTEX                       | mg/kg | NAM/ACSE/X0 | 6 AR        | < 0.05 |    |        |    | < 0.05 |    |
| Speciated Petroleum Hydrocarbons |       |             |             |        |    |        |    |        |    |
| C5-C6 Aliphatic                  | mg/kg | NAM/ACSE/X0 | 7 AR        | < 0.10 |    |        |    | < 0.10 |    |
| >C6-C8 Aliphatic                 | mg/kg | NAM/ACSE/X0 | 7 AR        | < 0.10 |    |        |    | < 0.10 |    |
| >C8-C10 Aliphatic                | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | < 10.0 |    |
| >C10-C12 Aliphatic               | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | < 10.0 |    |
| >C12-C16 Aliphatic               | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | < 10.0 |    |
| >C16-C21 Aliphatic               | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | < 10.0 |    |
| >C21-C35 Aliphatic               | mg/kg | NAM/ACSE/X0 | 7 AR        | 35.2   |    |        |    | 150    |    |
| C6-C7 Aromatic                   | mg/kg | NAM/ACSE/X0 | 7 AR        | < 0.10 |    |        |    | < 0.10 |    |
| C7-C8 Aromatic                   | mg/kg | NAM/ACSE/X0 | 7 AR        | < 0.10 |    |        |    | < 0.10 |    |
| >C8-C10 Aromatic                 | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | 12.0   |    |
| >C10-C12 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | < 10.0 |    |
| >C12-C16 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | < 10.0 |    |
| >C16-C21 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        | < 10.0 |    |        |    | < 10.0 |    |
| >C21-C35 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        | 90.8   |    |        |    | 395    |    |

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LF

Dorset BH16 6LE

Total Speciated TPH

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

mg/kg

NAM/ACSE/X07

AR

126

Quality Testing & Materials Consultancy to the Construction Industry

557

Page: 3 of 14

Certificate No. 18-09563-Issue 1-Page: 4 **Site Address Poole Park Minature Railway** 



**ACSE Sample Number** Sample ID 38170 426804 - 18-97284

SILT

426805 - 18-97284 426806 - 18-97284

Clients Sample Ref.

TP03 TP05 TP05

Location / Sample Depth (m)

**Date Sampled** 

0.00-0.66m 0.42-0.87m 01/10/2018 01/10/2018 0.66-1.00m 01/10/2018

**Time Sampled** Sample deviating codes Client's Sample Description

ef

SILT

Brown gravelly silty SAND Brown gravelly silty SAND Grey mottled orange clayey SAND SILT

**ACS Testing Material Description** 

ACSE Material Description (Principal Matrix - As Received)

| Determination              | Units | Method      | Prepared As | Result | AS  | Result | AS  | Result | AS  |
|----------------------------|-------|-------------|-------------|--------|-----|--------|-----|--------|-----|
| Anions                     |       |             |             |        |     |        |     |        |     |
| Water Soluble Sulphate     | mg/l  | MT/ACSE/204 | AD          | 133    | *f  |        |     | 13.5   | *f  |
| BTEX                       |       |             |             |        |     |        |     |        |     |
| Benzene                    | mg/kg | MT/ACSE/101 | AR          |        |     | 0.10   | *ef |        |     |
| Ethylbenzene               | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.10 | *ef |        |     |
| m+p-xylene                 | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.19 | *ef |        |     |
| o-xylene                   | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.10 | *ef |        |     |
| Toluene                    | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.10 | *ef |        |     |
| Total BTEX                 | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.60 | *ef |        |     |
| Carbon                     |       |             |             |        |     |        |     |        |     |
| Soil Organic Matter        | %     | MT/ACSE/102 | AR          |        |     | 2.59   |     |        |     |
| FOC                        | %     | MT/ACSE/102 | AR          |        |     | 0.0150 |     |        |     |
| TOC (Total Organic Carbon) | %     | MT/ACSE/102 | AR          |        |     | 1.49   | *   |        |     |
| Loss on Ignition           |       |             |             |        |     |        |     |        |     |
| Loss on Ignition (440 ℃)   | %     | MT/ACSE/302 | AD          |        |     | 3.2    | *f  |        |     |
| Metals (Soil)              |       |             |             |        |     |        |     |        |     |
| Arsenic                    | mg/kg | MT/ACSE/201 | AD          |        |     | 17.8   | *#  |        |     |
| Cadmium                    | mg/kg | MT/ACSE/201 | AD          |        |     | < 1.00 | *#  |        |     |
| Chromium                   | mg/kg | MT/ACSE/201 | AD          |        |     | 38.8   | *#  |        |     |
| Copper                     | mg/kg | MT/ACSE/201 | AD          |        |     | 143    | *#  |        |     |
| Mercury                    | mg/kg | MT/ACSE/202 |             |        |     | 0.40   | *   |        |     |
| Nickel                     | mg/kg | MT/ACSE/201 | AD          |        |     | 18.8   | *#  |        |     |
| Lead                       | mg/kg | MT/ACSE/201 | AD          |        |     | 92.8   | *#  |        |     |
| Selenium                   | mg/kg | MT/ACSE/201 | AD          |        |     | < 6.00 | *#  |        |     |
| Zinc                       | mg/kg | MT/ACSE/201 | AD          |        |     | 125    | *#  |        |     |
| Chromium III               | mg/kg | NAM/ACSE/X1 |             |        |     | 38.8   |     |        |     |
| Chromium Hexavalent        | mg/kg | NAM/ACSE/X1 | 1 AD        |        |     | < 1.00 | f   |        |     |
| Petroleum Hydrocarbons     |       |             |             |        |     |        |     |        |     |
| Total TPH (C10-C40)        | mg/kg | MT/ACSE/105 | AR          |        |     | 256    | *#  |        |     |
| pH and Conductivity        |       |             |             |        |     |        |     |        |     |
| pH (@ 20 ℃)                | units | MT/ACSE/301 | AD          | 7.5    | *ef | 7.3    | *ef | 5.7    | *ef |
| Poly Aromatic Hydrocarbons |       |             |             |        |     |        |     |        |     |
| Naphthalene                | mg/kg | MT/ACSE/106 | AD          |        |     | 0.74   | *#f |        |     |
| Acenaphthylene             | mg/kg | MT/ACSE/106 | AD          |        |     | 3.87   | *#f |        |     |
| Acenaphthene               | mg/kg | MT/ACSE/106 | AD          |        |     | 0.28   | *#f |        |     |
| Fluorene                   | mg/kg | MT/ACSE/106 | AD          |        |     | 0.65   | *#f |        |     |
| Phenanthrene               | mg/kg | MT/ACSE/106 | AD          |        |     | 3.02   | *#f |        |     |
| Anthracene                 | mg/kg | MT/ACSE/106 |             |        |     | 3.70   | *#f |        |     |
| Fluoranthene               | mg/kg | MT/ACSE/106 |             |        |     | 12.3   | *#f |        |     |
| Pyrene                     | mg/kg | MT/ACSE/106 |             |        |     | 13.1   | *#f |        |     |
| Benzo (a) anthracene       | mg/kg | MT/ACSE/106 |             |        |     | 8.32   | *#f |        |     |
| Chrysene                   | mg/kg | MT/ACSE/106 |             |        |     | 10.9   | *#f |        |     |
| Benzo (b) fluoranthene     | mg/kg | MT/ACSE/106 | AD          |        |     | 20.0   | *#f |        |     |

**Head Office** Registered Office

Unit 14B Unit 14B Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 4 of 14

Certificate No. 18-09563-Issue 1-Page: 5 **Site Address Poole Park Minature Railway** 



**ACSE Sample Number** 38170 Sample ID 426804 - 18-97284 426805 - 18-97284 426806 - 18-97284 Clients Sample Ref. TP03 TP05 TP05 Location / Sample Depth (m) 0.42-0.87m 0.00-0.66m 0.66-1.00m 01/10/2018 01/10/2018 01/10/2018

ef

**Date Sampled Time Sampled** Sample deviating codes Client's Sample Description

Brown gravelly silty SAND Brown gravelly silty SAND Grey mottled orange clayey SAND SILT SILT SILT

**ACS Testing Material Description** 

ACSE Material Description (Principal Matrix - As Received)

| Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |       |             | -           |        |    |        |     |        |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|-------------|-------------|--------|----|--------|-----|--------|----|
| Benzo (a) pyrene         mg/kg         MT/ACSE/106         AD         —         14.2         *#!         —           Indeno (1 2 3 CD) pyrene         mg/kg         MT/ACSE/106         AD         —         13.5         *#!         —           Dibenzo(a) handrhasene         mg/kg         MT/ACSE/106         AD         —         19.0         *#!         —           Benzo(g) hijperylene         mg/kg         MT/ACSE/106         AD         —         19.0         *#!         —           Polychlorinated Biphenyls (PCBs)           FOB(7 Congeners)         mg/kg         MT/ACSE/106         AD         —         —         —         —           PCB (7 Congeners)         mg/kg         MT/ACSE/106         AD         —         —         —         —         —           PCB (7 Congeners)         mg/kg         MT/ACSE/106         AD         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —<                                  | Determination                    | Units | Method      | Prepared As | Result | AS | Result | AS  | Result | AS |
| Indeno (1 2 3 CD) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo (k) fluoranthene           | mg/kg | MT/ACSE/106 | S AD        |        |    | 5.99   | *#f |        |    |
| Dibenzo(a h)anthracene         mg/kg         MT/ACSE/106         AD         —         4,689         *##         —           Benzo(a h)ipenylene         mg/kg         MT/ACSE/106         AD         —         19,0         *##         —           Total PAH         mg/kg         MTACSE/106         AD         —         134         *##         —           POBY Congeners)         mg/kg         MTACSE/108         AD         —         —         —         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         1,00         *         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         1,00         *         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         1,00         *         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         1,00         *         —           PCB (7 Congeners)         mg/kg         MAMACSE/205         AR         —         0,05         —         —           Heyane         mg/kg         NAMACSE/205         AR         —         0,05         —         —                   | Benzo (a) pyrene                 | mg/kg | MT/ACSE/106 | S AD        |        |    | 14.2   | *#f |        |    |
| Benzo(g h j)penylene         mg/kg         MTACSE/106         AD         —         19.0         *ff         —           POal PAH         mg/kg         MTACSE/108         AD         —         134         *ff         —           POB (7 Congeners)         mg/kg         JHP-GCMS         AD         —         —         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         —         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         —         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         —         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         4.00         —           PCB (7 Congeners)         mg/kg         MTACSE/104         AD         —         4.00         —           PCB (7 Congeners)         mg/kg         MAMACSE/206         AR         —         4.005         —         —           PCB (7 Congeners)         mg/kg         MAMACSE/206         AR         —         4.005         —         —         —           PCB (2 Congeners)         mg/kg         MAMACSE/206         AR< | Indeno (1 2 3-CD) pyrene         | mg/kg | MT/ACSE/106 | S AD        |        |    | 13.5   | *#f |        |    |
| Total PAH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dibenzo(a h)anthracene           | mg/kg | MT/ACSE/106 | S AD        |        |    | 4.69   | *#f |        |    |
| Polychlorinated Biphenyls (PCBs)         mg/kg         IHP-GCMS         AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benzo(g h i)perylene             | mg/kg | MT/ACSE/106 | S AD        |        |    | 19.0   | *#f |        |    |
| PCB (7 Congeners)         mg/kg         IHP-GCMS         AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total PAH                        | mg/kg | MT/ACSE/106 | S AD        |        |    | 134    | *#f |        |    |
| PCB (7 Congeners)   mg/kg   MT/ACSE/104   AD     < 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Polychlorinated Biphenyls (PCBs) |       |             |             |        |    |        |     |        |    |
| MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCB (7 Congeners)                | mg/kg | IHP-GCMS    | AD          |        |    |        |     |        |    |
| MTBE         mg/kg         NAM/ACSE/X12         AR         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PCB (7 Congeners)                | mg/kg | MT/ACSE/104 | 4 AD        |        |    | < 1.00 | *   |        |    |
| Heyane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Speciated BTEX                   |       |             |             |        |    |        |     |        |    |
| Heptane         mg/kg         NAM/ACSE/X06         AR          < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTBE                             | mg/kg | NAM/ACSE/X1 | 2 AR        |        |    | < 0.05 |     |        |    |
| Octane         mg/kg         NAM/ACSE/X06         AR          < 0.05            Benzene         mg/kg         NAM/ACSE/X06         AR          < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hexane                           | mg/kg | NAM/ACSE/X0 | 6 AR        |        |    | < 0.05 |     |        |    |
| Benzene         mg/kg         NAM/ACSE/X06         AR          < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heptane                          | mg/kg | NAM/ACSE/X0 | 6 AR        |        |    | < 0.05 |     |        |    |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Octane                           | mg/kg | NAM/ACSE/X0 | 6 AR        |        |    | < 0.05 |     |        |    |
| Ethylbenzene         mg/kg         NAM/ACSE/X06         AR          < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benzene                          | mg/kg | NAM/ACSE/X0 | 6 AR        |        |    | < 0.05 |     |        |    |
| m+p-xylene         mg/kg         NAM/ACSE/X06         AR          < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene                          | mg/kg | NAM/ACSE/X0 | 16 AR       |        |    | < 0.05 |     |        |    |
| cxylene         mg/kg         NAM/ACSE/X06         AR          < 0.05            Total BTEX         mg/kg         NAM/ACSE/X06         AR          < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethylbenzene                     | mg/kg | NAM/ACSE/X0 | 16 AR       |        |    | < 0.05 |     |        |    |
| Total BTEX   mg/kg   NAM/ACSE/X06   AR     < 0.05         Speciated Petroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m+p-xylene                       | mg/kg | NAM/ACSE/X0 | 16 AR       |        |    | < 0.05 |     |        |    |
| Speciated Petroleum Hydrocarbons           C5-C6 Aliphatic         mg/kg         NAM/ACSE/X07         AR          < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o-xylene                         | mg/kg | NAM/ACSE/X0 | 16 AR       |        |    | < 0.05 |     |        |    |
| C5-C6 Aliphatic         mg/kg         NAM/ACSE/X07         AR          < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total BTEX                       | mg/kg | NAM/ACSE/X0 | 6 AR        |        |    | < 0.05 |     |        |    |
| >C6-C8 Aliphatic         mg/kg         NAM/ACSE/X07         AR          < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Speciated Petroleum Hydrocarbons |       |             |             |        |    |        |     |        |    |
| >C8-C10 Aliphatic         mg/kg         NAM/ACSE/X07         AR          < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C5-C6 Aliphatic                  | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 0.10 |     |        |    |
| >C10-C12 Aliphatic       mg/kg       NAM/ACSE/X07       AR        < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >C6-C8 Aliphatic                 | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 0.10 |     |        |    |
| >C10-C12 Aliphatic       mg/kg       NAM/ACSE/X07       AR        < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >C8-C10 Aliphatic                | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
| >C16-C21 Aliphatic         mg/kg         NAM/ACSE/X07         AR          < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
| >C21-C35 Aliphatic         mg/kg         NAM/ACSE/X07         AR          73.1            C6-C7 Aromatic         mg/kg         NAM/ACSE/X07         AR          < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >C12-C16 Aliphatic               | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
| C6-C7 Aromatic         mg/kg         NAM/ACSE/X07         AR          < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >C16-C21 Aliphatic               | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
| C7-C8 Aromatic         mg/kg         NAM/ACSE/X07         AR          < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >C21-C35 Aliphatic               | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | 73.1   |     |        |    |
| >C8-C10 Aromatic         mg/kg         NAM/ACSE/X07         AR          < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C6-C7 Aromatic                   | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 0.10 |     |        |    |
| >C10-C12 Aromatic       mg/kg       NAM/ACSE/X07       AR        < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C7-C8 Aromatic                   | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 0.10 |     |        |    |
| >C12-C16 Aromatic       mg/kg       NAM/ACSE/X07       AR        < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >C8-C10 Aromatic                 | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
| >C16-C21 Aromatic       mg/kg       NAM/ACSE/X07       AR        < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >C10-C12 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
| >C21-C35 Aromatic mg/kg NAM/ACSE/X07 AR <b>105</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >C12-C16 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >C16-C21 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | < 10.0 |     |        |    |
| Total Speciated TPH mg/kg NAM/ACSE/X07 AR 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >C21-C35 Aromatic                | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | 105    |     |        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Speciated TPH              | mg/kg | NAM/ACSE/X0 | 7 AR        |        |    | 178    |     |        |    |

**Head Office** Unit 14B Blackhill Road West

Unit 14B Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park Poole

Registered Office

Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 5 of 14

Certificate No. 18-09563-Issue 1-Page: 6 Site Address **Poole Park Minature Railway** 



**ACSE Sample Number** Sample ID

38173 426807 - 18-97284

Clients Sample Ref.

**TP07** 

Location / Sample Depth (m)

0.08-0.32m

426809 - 18-97284

**Date Sampled** 

01/10/2018

0.47-0.74m

AS

426808 - 18-97284

**TP07** 

01/10/2018

Result

**TP08** 0.29-0.58m

**Time Sampled** Sample deviating codes **Client's Sample Description** 

ef ef 01/10/2018

**ACS Testing Material Description** 

**Brown gravelly SAND** 

AS

Dark brown mottled dark Brown gravelly silty SAND

AS

grey sandy PEAT SAND PEAT

SAND

Result

ACSE Material Description (Principal Matrix - As Received)

Determination Units Method Prepared As Result **Anions** mg/l MT/ACSE/204 AD

Water Soluble Sulphate 135 \*f **BTEX** Benzene mg/kg MT/ACSE/101 AR < 0.10 \*ef 0.29 \*ef mg/kg MT/ACSE/101 AR \*ef Ethylbenzene < 0.10 < 0.10 \*ef m+p-xylene mg/kg MT/ACSE/101 AR < 0.19 \*ef < 0.19 \*ef MT/ACSE/101 AR ma/ka \*ef o-xylene < 0.10 < 0.10 \*ef mg/kg MT/ACSE/101 AR \*ef < 0.10 Toluene < 0.10 \*ef Total BTEX mg/kg MT/ACSE/101 AR < 0.60 \*ef < 0.60 \*ef Carbon MT/ACSE/102 Soil Organic Matter % AR 1.65 7.55 % MT/ACSE/102 AR < 0.0100 0.0438 FOC TOC (Total Organic Carbon) MT/ACSF/102 AR % 0.95 4.34 Loss on Ignition Loss on Ignition (440 ℃) % MT/ACSE/302 AD 2.2 \*f 22 \*f Metals (Soil) Arsenic mg/kg MT/ACSF/201 AD 10.7 \*# 21.5 MT/ACSE/201 \*# Cadmium mg/kg AD < 1.00 < 1.00 MT/ACSE/201 AD \*# mg/kg 28.9 40.1 Chromium MT/ACSE/201 \*# mg/kg AD 10.7 9.98 Copper mg/kg MT/ACSE/202 ΑD 0.09 \*# 0.09 Mercury \*# Nickel mg/kg MT/ACSE/201 AD 5.57 9.34 MT/ACSE/201 \*# Lead mg/kg AD 59.8 79.1 MT/ACSE/201 \*# Selenium mg/kg AD < 6.00 < 6.00 mg/kg MT/ACSE/201 ΑD \*# Zinc 23.0 28.5 NAM/ACSE/X11 Chromium III mg/kg AD 28.9 40.1 NAM/ACSE/X11 ΑD Chromium Hexavalent mg/kg < 1.00 < 1.00 f **Petroleum Hydrocarbons** Total TPH (C10-C40) MT/ACSE/105 AR 384 \*# mg/kg 114 pH and Conductivity MT/ACSE/301 pH (@ 20 °C) units AΠ 6.7 \*ef 5.7 \*ef 6.7 \*ef **Poly Aromatic Hydrocarbons** Naphthalene mg/kg MT/ACSE/106 AD 0.11 \*#f 0.48 \*f MT/ACSE/106 Acenaphthylene ma/ka AD 0.70 \*#f \*f < 0.10 mg/kg MT/ACSE/106 ΑD \*#1 \*f Acenaphthene < 0.10 0.66 MT/ACSE/106 \*#f \*f Fluorene mg/kg AD 0.14 0.60 Phenanthrene mg/kg MT/ACSE/106 ΑD 0.30 \*#f 0.90 \*f \*f Anthracene mg/kg MT/ACSE/106 AD 0.51 \*#f 0.20 MT/ACSE/106 ΑD \*#f 0.39 \*f 1.34 Fluoranthene mg/kg ΑD \*#f \*f Pyrene mg/kg MT/ACSE/106 1.56 0.36 mg/kg MT/ACSE/106 AD 1.51 \*#f 0.30 \*f Benzo (a) anthracene

**Head Office** Unit 14B

Benzo (b) fluoranthene

Chrysene

Unit 14B Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 **ACS Environmental Testing Limited** Registered in England and Wales No. 6000065

mg/ka

mg/kg

Registered Office

MT/ACSE/106

MT/ACSE/106

Quality Testing & Materials Consultancy to the Construction Industry

0.23

0.40

\*f

\*f

\*#f

Page: 6 of 14

AD

AD

1.50

3.54

Certificate No. 18-09563-Issue 1-Page: 7
Site Address Poole Park Minature Railway



**ACSE Sample Number** 38173 426807 - 18-97284 426808 - 18-97284 426809 - 18-97284 Sample ID Clients Sample Ref. **TP07 TP07 TP08** Location / Sample Depth (m) 0.08-0.32m 0.47-0.74m 0.29-0.58m 01/10/2018 01/10/2018 01/10/2018 **Date Sampled Time Sampled** Sample deviating codes ef ef ef **Client's Sample Description ACS Testing Material Description Brown gravelly SAND** Dark brown mottled dark Brown gravelly silty SAND grey sandy PEAT SAND SAND ACSE Material Description (Principal Matrix - As Received) PEAT Determination Units Method Prepared As Result AS Result AS Result AS Benzo (k) fluoranthene mg/kg MT/ACSE/106 ΑD 1.02 \*#1 0.14 \*f MT/ACSE/106 AD \*#f \*f Benzo (a) pyrene mg/kg 2.48 0.27 MT/ACSE/106 ΑD \*#f \*f Indeno (1 2 3-CD) pyrene mg/kg 2.20 0.27 ΑD \*#f \*f Dibenzo(a h)anthracene mg/kg MT/ACSE/106 0.61 0.19 Benzo(g h i)perylene mg/kg MT/ACSE/106 AD 2.07 \*#f 0.23 \*f MT/ACSE/106 AD \*#1 \*f Total PAH mg/kg 19.6 5.63 Polychlorinated Biphenyls (PCBs) PCB (7 Congeners) mg/kg IHP-GCMS AD < 1.00 < 1.00 mg/kg MT/ACSE/104 ΑD PCB (7 Congeners) **Speciated BTEX** MTBF NAM/ACSE/X12 mg/kg AR < 0.05 < 0.05 mg/kg NAM/ACSE/X06 AR Hexane < 0.05 < 0.05 NAM/ACSE/X06 Heptane mg/kg AR < 0.05 < 0.05

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park

Poole Dorset BH16 6LE

Octane

Benzene

Toluene

o-xylene

Ethylbenzene

m+p-xylene

Total BTEX

C5-C6 Aliphatic

>C6-C8 Aliphatic

>C8-C10 Aliphatic

>C10-C12 Aliphatic

>C12-C16 Aliphatic

>C16-C21 Aliphatic

>C21-C35 Aliphatic

C6-C7 Aromatic

C7-C8 Aromatic

>C8-C10 Aromatic

>C10-C12 Aromatic

>C12-C16 Aromatic

>C16-C21 Aromatic

>C21-C35 Aromatic

Total Speciated TPH

**Speciated Petroleum Hydrocarbons** 

Tel 01202 628680 Fax 01202 628680 Registered Office
Unit 14B
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE

mg/kg

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X07

AR

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.10

< 0.10

< 10.0

< 10.0

< 10.0

< 10.0

< 0.10

< 0.10

< 10.0

< 10.0

< 10.0

< 10.0

137

166

29.5

ACS Environmental Testing Limited
Registered in England and
Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.10

< 0.10

< 10.0

< 10.0

< 10.0

< 10.0

< 0.10

< 0.10

< 10.0

< 10.0

< 10.0

< 10.0

39.5

78.2

38.7

Page: 7 of 14

Certificate No. 18-09563-Issue 1-Page: 8 **Site Address Poole Park Minature Railway** 



**ACSE Sample Number** 

Sample ID

426810 - 18-97284

38176

SILT

Clients Sample Ref.

TP09 TP09 0.00-0.39m

426812 - 18-97284

Location / Sample Depth (m)

Prepared As Result

0.73-1.00m

426811 - 18-97284

TP11

**Date Sampled Time Sampled**  01/10/2018

AS

01/10/2018 ef

AS

0.00-0.21m 01/10/2018

Sample deviating codes **Client's Sample Description** 

Brown gravelly silty SAND Grey very sandy PEAT

SAND

Result

Brown sandy gravelly SILT

AS

Result

**ACS Testing Material Description** 

Method

ACSE Material Description (Principal Matrix - As Received)

Units

| Determination              | Ullits | welliou      | riepaieu A | s nesuit | AS  | nesuit | AS  | nesuit | A3  |  |
|----------------------------|--------|--------------|------------|----------|-----|--------|-----|--------|-----|--|
| Anions                     |        |              |            |          |     |        |     |        |     |  |
| Water Soluble Sulphate     | mg/l   | MT/ACSE/204  | AD         |          |     | 504    | *f  |        |     |  |
| ВТЕХ                       |        |              |            |          |     |        |     |        |     |  |
| Benzene                    | mg/kg  | MT/ACSE/101  | AR         | 0.10     | *ef |        |     | 0.30   | *ef |  |
| Ethylbenzene               | mg/kg  | MT/ACSE/101  | AR         | < 0.10   | *ef |        |     | < 0.10 | *ef |  |
| m+p-xylene                 | mg/kg  | MT/ACSE/101  | AR         | < 0.19   | *ef |        |     | < 0.19 | *ef |  |
| o-xylene                   | mg/kg  | MT/ACSE/101  | AR         | < 0.10   | *ef |        |     | < 0.10 | *ef |  |
| Toluene                    | mg/kg  | MT/ACSE/101  | AR         | 0.13     | *ef |        |     | 0.14   | *ef |  |
| Total BTEX                 | mg/kg  | MT/ACSE/101  | AR         | < 0.60   | *ef |        |     | < 0.60 | *ef |  |
| Carbon                     |        |              |            |          |     |        |     |        |     |  |
| Soil Organic Matter        | %      | MT/ACSE/102  | AR         | 3.53     |     |        |     | 11.4   |     |  |
| FOC                        | %      | MT/ACSE/102  | AR         | 0.0205   |     |        |     | 0.0661 |     |  |
| TOC (Total Organic Carbon) | %      | MT/ACSE/102  | AR         | 2.03     | *   |        |     | 6.55   | *   |  |
| Loss on Ignition           |        |              |            |          |     |        |     |        |     |  |
| Loss on Ignition (440 °C)  | %      | MT/ACSE/302  | AD         | 7.2      | *f  |        |     | 8.9    | *f  |  |
| Metals (Soil)              |        |              |            |          |     |        |     |        |     |  |
| Arsenic                    | mg/kg  | MT/ACSE/201  | AD         | 9.83     | *#  |        |     | 16.3   | *#  |  |
| Cadmium                    | mg/kg  | MT/ACSE/201  | AD         | < 1.00   | *#  |        |     | < 1.00 | *#  |  |
| Chromium                   | mg/kg  | MT/ACSE/201  | AD         | 14.1     | *#  |        |     | 21.4   | *#  |  |
| Copper                     | mg/kg  | MT/ACSE/201  | AD         | 78.2     | *#  |        |     | 67.4   | *#  |  |
| Mercury                    | mg/kg  | MT/ACSE/202  | AD         | 0.17     | *   |        |     | 0.21   | *   |  |
| Nickel                     | mg/kg  | MT/ACSE/201  | AD         | 6.33     | *#  |        |     | 12.1   | *#  |  |
| Lead                       | mg/kg  | MT/ACSE/201  | AD         | 144      | *#  |        |     | 60.8   | *#  |  |
| Selenium                   | mg/kg  | MT/ACSE/201  | AD         | < 6.00   | *#  |        |     | < 6.00 | *#  |  |
| Zinc                       | mg/kg  | MT/ACSE/201  | AD         | 28.6     | *#  |        |     | 223    | *#  |  |
| Chromium III               | mg/kg  | NAM/ACSE/X11 |            | 14.1     |     |        |     | 21.4   |     |  |
| Chromium Hexavalent        | mg/kg  | NAM/ACSE/X11 | AD         | < 1.00   | f   |        |     | < 1.00 | f   |  |
| Petroleum Hydrocarbons     |        |              |            |          |     |        |     |        |     |  |
| Total TPH (C10-C40)        | mg/kg  | MT/ACSE/105  | AR         | < 50.0   | *#  |        |     | 410    | *#  |  |
| pH and Conductivity        |        |              |            |          |     |        |     |        |     |  |
| pH (@ 20℃)                 | units  | MT/ACSE/301  | AD         | 6.6      | *ef | 3.9    | *ef | 6.9    | *ef |  |
| Poly Aromatic Hydrocarbons |        |              |            |          |     |        |     |        |     |  |
| Naphthalene                | mg/kg  | MT/ACSE/106  | AD         | 0.10     | *#f |        |     | 0.20   | *#f |  |
| Acenaphthylene             | mg/kg  | MT/ACSE/106  | AD         | 0.40     | *#f |        |     | 0.77   | *#f |  |
| Acenaphthene               | mg/kg  | MT/ACSE/106  | AD         | < 0.10   | *#f |        |     | 0.12   | *#f |  |
| Fluorene                   | mg/kg  | MT/ACSE/106  | AD         | 0.10     | *#f |        |     | 0.17   | *#f |  |
| Phenanthrene               | mg/kg  | MT/ACSE/106  | AD         | 0.39     | *#f |        |     | 0.67   | *#f |  |
| Anthracene                 | mg/kg  | MT/ACSE/106  | AD         | 0.28     | *#f |        |     | 0.61   | *#f |  |
| Fluoranthene               | mg/kg  | MT/ACSE/106  | AD         | 1.23     | *#f |        |     | 1.79   | *#f |  |
| Pyrene                     | mg/kg  | MT/ACSE/106  | AD         | 1.07     | *#f |        |     | 1.83   | *#f |  |
| Benzo (a) anthracene       | mg/kg  | MT/ACSE/106  | AD         | 1.05     | *#f |        |     | 1.47   | *#f |  |
| Chrysene                   | mg/kg  | MT/ACSE/106  | AD         | 0.98     | *#f |        |     | 1.46   | *#f |  |

**Head Office** Unit 14B

Dorset BH16 6LE

Tel 01202 628680

Fax 01202 628680

Benzo (b) fluoranthene

Determination

Registered Office Unit 14B Blackhill Road West

Blackhill Road West Holton Heath Trading Park Poole

Poole

Holton Heath Trading Park

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

mg/kg

MT/ACSE/106

Quality Testing & Materials Consultancy to the Construction Industry

2.67

\*#f

Page: 8 of 14

1.72

Certificate No. 18-09563-Issue 1-Page: 9 **Poole Park Minature Railway Site Address** 



**ACSE Sample Number** Sample ID

38176 426810 - 18-97284

TP09

426811 - 18-97284

Clients Sample Ref.

38177 TP09

426812 - 18-97284

Location / Sample Depth (m)

0.00-0.39m 0.73-1.00m 01/10/2018 01/10/2018 **TP11** 0.00-0.21m

**Date Sampled** Time Sampled Sample deviating codes Client's Sample Description

ef

SAND

01/10/2018

**ACS Testing Material Description** 

Brown gravelly silty SAND Grey very sandy PEAT SILT

Brown sandy gravelly SILT

| Determination                    | Units | Method       | Prepared As | Result | AS  | Result | AS | Result | AS  |
|----------------------------------|-------|--------------|-------------|--------|-----|--------|----|--------|-----|
| Benzo (k) fluoranthene           | mg/kg | MT/ACSE/106  | AD          | 0.74   | *#f |        |    | 1.06   | *#f |
| Benzo (a) pyrene                 | mg/kg | MT/ACSE/106  | AD          | 1.28   | *#f |        |    | 1.98   | *#f |
| Indeno (1 2 3-CD) pyrene         | mg/kg | MT/ACSE/106  | AD          | 0.93   | *#f |        |    | 1.53   | *#f |
| Dibenzo(a h)anthracene           | mg/kg | MT/ACSE/106  | AD          | 0.31   | *#f |        |    | 0.43   | *#f |
| Benzo(g h i)perylene             | mg/kg | MT/ACSE/106  | AD          | 0.85   | *#f |        |    | 1.43   | *#f |
| Total PAH                        | mg/kg | MT/ACSE/106  | AD          | 11.4   | *#f |        |    | 18.2   | *#f |
| Polychlorinated Biphenyls (PCBs) |       |              |             |        |     |        |    |        |     |
| PCB (7 Congeners)                | mg/kg | IHP-GCMS     | AD          |        |     |        |    |        |     |
| PCB (7 Congeners)                | mg/kg | MT/ACSE/104  | AD          | < 1.00 | *   |        |    | < 1.00 | *   |
| Speciated BTEX                   |       |              |             |        |     |        |    |        |     |
| MTBE                             | mg/kg | NAM/ACSE/X12 | 2 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Hexane                           | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Heptane                          | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Octane                           | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Benzene                          | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Toluene                          | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Ethylbenzene                     | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| m+p-xylene                       | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| o-xylene                         | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Total BTEX                       | mg/kg | NAM/ACSE/X06 | 6 AR        | < 0.05 |     |        |    | < 0.05 |     |
| Speciated Petroleum Hydrocarbons |       |              |             |        |     |        |    |        |     |
| C5-C6 Aliphatic                  | mg/kg | NAM/ACSE/X07 | 7 AR        | < 0.10 |     |        |    | < 0.10 |     |
| >C6-C8 Aliphatic                 | mg/kg | NAM/ACSE/X07 | 7 AR        | < 0.10 |     |        |    | < 0.10 |     |
| >C8-C10 Aliphatic                | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C10-C12 Aliphatic               | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C12-C16 Aliphatic               | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C16-C21 Aliphatic               | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C21-C35 Aliphatic               | mg/kg | NAM/ACSE/X07 | 7 AR        | 29.5   |     |        |    | 59.4   |     |
| C6-C7 Aromatic                   | mg/kg | NAM/ACSE/X07 | 7 AR        | < 0.10 |     |        |    | < 0.10 |     |
| C7-C8 Aromatic                   | mg/kg | NAM/ACSE/X07 | 7 AR        | < 0.10 |     |        |    | < 0.10 |     |
| >C8-C10 Aromatic                 | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C10-C12 Aromatic                | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C12-C16 Aromatic                | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C16-C21 Aromatic                | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | < 10.0 |     |
| >C21-C35 Aromatic                | mg/kg | NAM/ACSE/X07 | 7 AR        | < 10.0 |     |        |    | 87.5   |     |
| Total Speciated TPH              | mg/kg | NAM/ACSE/X07 | 7 AR        | 29.5   |     |        |    | 147    |     |
|                                  |       |              |             |        |     |        |    |        |     |

**Head Office** Unit 14B Blackhill Road West

Holton Heath Trading Park Poole

Dorset BH16 6LE Tel 01202 628680 Fax 01202 628680

Unit 14B Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Registered Office

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 9 of 14

Certificate No. 18-09563-Issue 1-Page: 10 **Site Address Poole Park Minature Railway** 



**ACSE Sample Number** Sample ID 38179 426813 - 18-97284

01/10/2018

Clients Sample Ref.

426814 - 18-97284 **TP11** TP13

426815 - 18-97284

Location / Sample Depth (m)

0.00-0.64m 0.47-1.00m

TP13

**Date Sampled** Time Sampled 01/10/2018 01/10/2018 0.64-1.00m

Sample deviating codes Client's Sample Description

ef

38180

Brown mottled sark grey

**ACS Testing Material Description** 

**Brown gravelly SAND** 

Multicoloured gravelly

ACSE Material Description (Principal Matrix - As Received)

SAND SAND SAND silty SAND SAND

| Determination              | Units | Method      | Prepared As | Result | AS  | Result | AS  | Result | AS  |
|----------------------------|-------|-------------|-------------|--------|-----|--------|-----|--------|-----|
| Anions                     |       |             |             |        |     |        |     |        |     |
| Water Soluble Sulphate     | mg/l  | MT/ACSE/204 | AD          | 89.5   | *f  |        |     | 3.56   | *f  |
| BTEX                       |       |             |             |        |     |        |     |        |     |
| Benzene                    | mg/kg | MT/ACSE/101 | AR          |        |     | 0.10   | *ef |        |     |
| Ethylbenzene               | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.10 | *ef |        |     |
| m+p-xylene                 | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.19 | *ef |        |     |
| o-xylene                   | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.10 | *ef |        |     |
| Toluene                    | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.10 | *ef |        |     |
| Total BTEX                 | mg/kg | MT/ACSE/101 | AR          |        |     | < 0.60 | *ef |        |     |
| Carbon                     |       |             |             |        |     |        |     |        |     |
| Soil Organic Matter        | %     | MT/ACSE/102 | AR          |        |     | 4.44   |     |        |     |
| FOC                        | %     | MT/ACSE/102 | AR          |        |     | 0.0257 |     |        |     |
| TOC (Total Organic Carbon) | %     | MT/ACSE/102 | AR          |        |     | 2.55   | *   |        |     |
| Loss on Ignition           |       |             |             |        |     |        |     |        |     |
| Loss on Ignition (440 °C)  | %     | MT/ACSE/302 | AD          |        |     | 2.1    | *f  |        |     |
| Metals (Soil)              |       |             |             |        |     |        |     |        |     |
| Arsenic                    | mg/kg | MT/ACSE/201 | AD          |        |     | 12.0   | *#  |        |     |
| Cadmium                    | mg/kg | MT/ACSE/201 | AD          |        |     | < 1.00 | *#  |        |     |
| Chromium                   | mg/kg | MT/ACSE/201 | AD          |        |     | 15.6   | *#  |        |     |
| Copper                     | mg/kg | MT/ACSE/201 | AD          |        |     | 121    | *#  |        |     |
| Mercury                    | mg/kg | MT/ACSE/202 |             |        |     | 0.72   | *#  |        |     |
| Nickel                     | mg/kg | MT/ACSE/201 | AD          |        |     | 10.2   | *#  |        |     |
| Lead                       | mg/kg | MT/ACSE/201 | AD          |        |     | 204    | *#  |        |     |
| Selenium                   | mg/kg | MT/ACSE/201 | AD          |        |     | < 6.00 | *#  |        |     |
| Zinc                       | mg/kg | MT/ACSE/201 | AD          |        |     | 95.2   | *#  |        |     |
| Chromium III               | mg/kg | NAM/ACSE/X1 |             |        |     | 15.6   |     |        |     |
| Chromium Hexavalent        | mg/kg | NAM/ACSE/X1 | 1 AD        |        |     | < 1.00 | f   |        |     |
| Petroleum Hydrocarbons     |       |             |             |        |     |        |     |        |     |
| Total TPH (C10-C40)        | mg/kg | MT/ACSE/105 | AR          |        |     | 423    | *#  |        |     |
| pH and Conductivity        |       |             |             |        |     |        |     |        |     |
| pH (@ 20 ℃)                | units | MT/ACSE/301 | AD          | 6.5    | *ef | 7.0    | *ef | 7.1    | *ef |
| Poly Aromatic Hydrocarbons |       |             |             |        |     |        |     |        |     |
| Naphthalene                | mg/kg | MT/ACSE/106 | AD          |        |     | 0.24   | *#f |        |     |
| Acenaphthylene             | mg/kg | MT/ACSE/106 | AD          |        |     | 0.45   | *#f |        |     |
| Acenaphthene               | mg/kg | MT/ACSE/106 | AD          |        |     | 0.11   | *#f |        |     |
| Fluorene                   | mg/kg | MT/ACSE/106 | AD          |        |     | 0.14   | *#f |        |     |
| Phenanthrene               | mg/kg | MT/ACSE/106 |             |        |     | 0.75   | *#f |        |     |
| Anthracene                 | mg/kg | MT/ACSE/106 |             |        |     | 0.46   | *#f |        |     |
| Fluoranthene               | mg/kg | MT/ACSE/106 |             |        |     | 2.37   | *#f |        |     |
| Pyrene                     | mg/kg | MT/ACSE/106 |             |        |     | 2.15   | *#f |        |     |
| Benzo (a) anthracene       | mg/kg | MT/ACSE/106 |             |        |     | 1.93   | *#f |        |     |
| Chrysene                   | mg/kg | MT/ACSE/106 |             |        |     | 1.66   | *#f |        |     |
| Benzo (b) fluoranthene     | mg/kg | MT/ACSE/106 | AD          |        |     | 3.01   | *#f |        |     |

**Head Office** Registered Office Unit 14B Unit 14B

Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 10 of 14

Certificate No. 18-09563-Issue 1-Page: 11
Site Address Poole Park Minature Railway



**ACSE Sample Number** 38179 38180 426813 - 18-97284 426814 - 18-97284 426815 - 18-97284 Sample ID Clients Sample Ref. **TP11 TP13 TP13** Location / Sample Depth (m) 0.47-1.00m 0.00-0.64m 0.64-1.00m 01/10/2018 01/10/2018 01/10/2018 **Date Sampled Time Sampled** Sample deviating codes ef ef **Client's Sample Description ACS Testing Material Description Brown gravelly SAND** Multicoloured gravelly Brown mottled sark grey SAND silty SAND SAND ACSE Material Description (Principal Matrix - As Received) SAND SAND Determination Units Method Prepared As Result AS Result AS Result AS Benzo (k) fluoranthene mg/kg MT/ACSE/106 ΑD 0.93 \*#f MT/ACSE/106 AD Benzo (a) pyrene mg/kg 2.13 \*#f MT/ACSE/106 ΑD \*#f Indeno (1 2 3-CD) pyrene mg/kg 1.46 ΑD Dibenzo(a h)anthracene mg/kg MT/ACSE/106 0.51 \*#f Benzo(g h i)perylene mg/kg MT/ACSE/106 AD 1.56 \*#f MT/ACSE/106 AD Total PAH mg/kg 19.8 \*#f Polychlorinated Biphenyls (PCBs) PCB (7 Congeners) mg/kg IHP-GCMS AD mg/kg MT/ACSE/104 ΑD PCB (7 Congeners) < 1.00 **Speciated BTEX** MTBF NAM/ACSE/X12 AR mg/kg < 0.05 mg/kg NAM/ACSE/X06 AR < 0.05 Hexane NAM/ACSE/X06 AR Heptane mg/kg < 0.05 Octane mg/kg NAM/ACSE/X06 AR < 0.05 NAM/ACSE/X06 AR Benzene mg/kg < 0.05 NAM/ACSE/X06 AR Toluene mg/kg < 0.05

Head Office Registered Office
Unit 14B Unit 14B
Blackhill Road West Blackhill Road We

Blackhill Road West
Holton Heath Trading Park
Poole
Poole
Poole

Poole Pool

Dorset BH16 6LE Dorset BH16 6L

Tel 01202 628680 Fax 01202 628680

Ethylbenzene

m+p-xylene o-xylene

Total BTEX

C5-C6 Aliphatic

>C6-C8 Aliphatic

>C8-C10 Aliphatic

>C10-C12 Aliphatic

>C12-C16 Aliphatic

>C16-C21 Aliphatic

>C21-C35 Aliphatic

C6-C7 Aromatic

C7-C8 Aromatic

>C8-C10 Aromatic

>C10-C12 Aromatic

>C12-C16 Aromatic

>C16-C21 Aromatic

>C21-C35 Aromatic

Total Speciated TPH

**Speciated Petroleum Hydrocarbons** 

Poole
Dorset BH16 6LE
ACS Environmental Testing Limited
Registered in England and
Wales No. 6000065

mg/kg

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X06

NAM/ACSE/X07

AR

Quality Testing & Materials Consultancy to the Construction Industry

< 0.05

< 0.05

< 0.05

< 0.05

< 0.10

< 0.10

< 10.0

< 10.0

< 10.0

< 10.0

< 0.10

< 0.10

< 10.0

< 10.0

< 10.0

10.8

212

273

49.8

Page: 11 of 14

Certificate No. 18-09563-Issue 1-Page: 12 **Site Address Poole Park Minature Railway** 



**ACSE Sample Number** 

Sample ID

426816 - 18-97284

426817 - 18-97284

Clients Sample Ref.

TP14

38182

TP14

Location / Sample Depth (m)

ACSE Material Description (Principal Matrix - As Received)

0.60-0.94m 0.15-0.60m

**Date Sampled** Time Sampled 01/10/2018

01/10/2018 ef

Sample deviating codes Client's Sample Description

Grey mottled brown sandy

**ACS Testing Material Description** 

**Grey sandy GRAVEL** 

SAND

PEAT PEAT

| ·                                          |                |                            |             |              |             |        |      |
|--------------------------------------------|----------------|----------------------------|-------------|--------------|-------------|--------|------|
| Determination                              | Units          | Method                     | Prepared As | Result       | AS          | Result | AS   |
| Anions                                     |                |                            |             |              |             |        |      |
| Vater Soluble Sulphate                     | mg/l           | MT/ACSE/204                | AD          |              |             | 46.0   | *f   |
| BTEX                                       |                |                            |             |              |             |        |      |
| Benzene                                    | mg/kg          | MT/ACSE/101                | AR          | 0.10         | *ef         |        |      |
| Ethylbenzene                               | mg/kg          | MT/ACSE/101                | AR          | < 0.10       | *ef         |        |      |
| n+p-xylene                                 | mg/kg          | MT/ACSE/101                | AR          | < 0.19       | *ef         |        |      |
| p-xylene                                   | mg/kg          | MT/ACSE/101                | AR          | < 0.10       | *ef         |        |      |
| Гoluene                                    | mg/kg          | MT/ACSE/101                | AR          | < 0.10       | *ef         |        |      |
| Total BTEX                                 | mg/kg          | MT/ACSE/101                | AR          | < 0.60       | *ef         |        |      |
| Carbon                                     |                |                            |             |              |             |        |      |
| Soil Organic Matter                        | %              | MT/ACSE/102                | AR          | 26.8         |             |        |      |
| FOC                                        | %              | MT/ACSE/102                | AR          | 0.156        |             |        |      |
| TOC (Total Organic Carbon)                 | %              | MT/ACSE/102                | AR          | 15.4         | *           |        |      |
| Loss on Ignition                           |                |                            |             |              |             |        |      |
| _oss on Ignition (440 °C)                  | %              | MT/ACSE/302                | AD          | 2.9          | *f          |        |      |
| Metals (Soil)                              |                |                            |             |              |             |        |      |
| Arsenic                                    | mg/kg          | MT/ACSE/201                | AD          | 16.2         | *#          |        |      |
| Cadmium                                    | mg/kg          | MT/ACSE/201                | AD          | < 1.00       | *#          |        |      |
| Chromium                                   | mg/kg          | MT/ACSE/201                | AD          | 46.6         | *#          |        |      |
| Copper                                     | mg/kg          | MT/ACSE/201                | AD          | 233          | *#          |        |      |
| Mercury                                    | mg/kg          | MT/ACSE/202                | AD          | 0.22         | *#          |        |      |
| Nickel                                     | mg/kg          | MT/ACSE/201                | AD          | 28.5         | *#          |        |      |
| ead                                        | mg/kg          | MT/ACSE/201                | AD          | 193          | *#          |        |      |
| Selenium                                   | mg/kg          | MT/ACSE/201                | AD          | < 6.00       | *#          |        |      |
| Zinc                                       | mg/kg          | MT/ACSE/201                | AD          | 73.7         | *#          |        |      |
| Chromium III                               | mg/kg          | NAM/ACSE/X11               | I AD        | 46.6         |             |        |      |
| Chromium Hexavalent                        | mg/kg          | NAM/ACSE/X11               | I AD        | < 1.00       | f           |        |      |
| Petroleum Hydrocarbons                     |                |                            |             |              |             |        |      |
| Fotal TPH (C10-C40)                        | mg/kg          | MT/ACSE/105                | AR          | 152          | *#          |        |      |
| pH and Conductivity                        | <u> </u>       |                            |             |              |             |        |      |
| bH (@ 20℃)                                 | units          | MT/ACSE/301                | AD          | 7.2          | *ef         | 6.3    | *ef  |
| Poly Aromatic Hydrocarbons                 | u.i.to         |                            | 7.13        | , . <u></u>  | <del></del> | 0.0    | - Ci |
|                                            | mg/kg          | MT/ACSE/106                | AD          | 0.60         | *#f         |        |      |
| Naphthalene                                | mg/kg          | MT/ACSE/106                | AD          | 0.45         | #1<br>*#f   |        |      |
| Acenaphthylene<br>Acenaphthene             | mg/kg          | MT/ACSE/106                | AD          | 0.45         | #1<br>*#f   |        |      |
| Fluorene                                   | mg/kg          | MT/ACSE/106                | AD          | 0.14         | *#f         |        |      |
| Phenanthrene                               | mg/kg          | MT/ACSE/106                | AD          | 2.17         | #1<br>*#f   |        |      |
| Anthracene                                 | mg/kg          | MT/ACSE/106                | AD          | 0.77         | *#f         |        |      |
| Fluoranthene                               | mg/kg          | MT/ACSE/106                | AD          | 4.71         | *#f         |        |      |
| aorana iono                                | mg/kg          | MT/ACSE/106                | AD          | 3.96         | *#f         |        |      |
| ovrene                                     |                |                            |             | 5.55         |             |        |      |
|                                            |                | MT/ACSE/106                | AD          | 2 82         | *#f         |        |      |
| Pyrene<br>Benzo (a) anthracene<br>Chrysene | mg/kg<br>mg/kg | MT/ACSE/106<br>MT/ACSE/106 | AD<br>AD    | 2.82<br>3.12 | *#f<br>*#f  |        |      |

Registered Office **Head Office** Unit 14B Unit 14B

Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 12 of 14

Certificate No. 18-09563-Issue 1-Page: 13 **Site Address Poole Park Minature Railway** 



**ACSE Sample Number** 

Sample ID

38182 426816 - 18-97284

Clients Sample Ref.

**TP14** 

426817 - 18-97284

Location / Sample Depth (m)

SAND

0.60-0.94m

**Date Sampled** 

0.15-0.60m 01/10/2018

01/10/2018

TP14

Time Sampled Sample deviating codes Client's Sample Description

ef

**ACS Testing Material Description** 

**Grey sandy GRAVEL** 

Grey mottled brown sandy

PEAT PEAT

ACSE Material Description (Principal Matrix - As Received)

| Determination                    | Units | Method       | Prepared As | Result | AS  | Result AS |
|----------------------------------|-------|--------------|-------------|--------|-----|-----------|
| Benzo (k) fluoranthene           | mg/kg | MT/ACSE/106  | AD          | 2.23   | *#f |           |
| Benzo (a) pyrene                 | mg/kg | MT/ACSE/106  | AD          | 3.30   | *#f |           |
| Indeno (1 2 3-CD) pyrene         | mg/kg | MT/ACSE/106  | AD          | 2.96   | *#f |           |
| Dibenzo(a h)anthracene           | mg/kg | MT/ACSE/106  | AD          | 0.97   | *#f |           |
| Benzo(g h i)perylene             | mg/kg | MT/ACSE/106  | AD          | 2.92   | *#f |           |
| Total PAH                        | mg/kg | MT/ACSE/106  | AD          | 36.2   | *#f |           |
| Polychlorinated Biphenyls (PCBs) |       |              |             |        |     |           |
| PCB (7 Congeners)                | mg/kg | IHP-GCMS     | AD          |        |     |           |
| PCB (7 Congeners)                | mg/kg | MT/ACSE/104  | AD          | < 1.00 | *   |           |
| Speciated BTEX                   |       |              |             |        |     |           |
| МТВЕ                             | mg/kg | NAM/ACSE/X1  | 2 AR        | < 0.05 |     |           |
| Hexane                           | mg/kg | NAM/ACSE/X00 | 6 AR        | < 0.05 |     |           |
| Heptane                          | mg/kg | NAM/ACSE/X00 | 6 AR        | < 0.05 |     |           |
| Octane                           | mg/kg | NAM/ACSE/X00 | 6 AR        | < 0.05 |     |           |
| Benzene                          | mg/kg | NAM/ACSE/X00 | 6 AR        | < 0.05 |     |           |
| Toluene                          | mg/kg | NAM/ACSE/X00 | 6 AR        | < 0.05 |     |           |
| Ethylbenzene                     | mg/kg | NAM/ACSE/X0  | 6 AR        | < 0.05 |     |           |
| m+p-xylene                       | mg/kg | NAM/ACSE/X0  | 6 AR        | < 0.05 |     |           |
| o-xylene                         | mg/kg | NAM/ACSE/X0  | 6 AR        | < 0.05 |     |           |
| Total BTEX                       | mg/kg | NAM/ACSE/X0  | 6 AR        | < 0.05 |     |           |
| Speciated Petroleum Hydrocarbons |       |              |             |        |     |           |
| C5-C6 Aliphatic                  | mg/kg | NAM/ACSE/X0  | 7 AR        | < 0.10 |     |           |
| >C6-C8 Aliphatic                 | mg/kg | NAM/ACSE/X0  | 7 AR        | < 0.10 |     |           |
| >C8-C10 Aliphatic                | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C10-C12 Aliphatic               | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C12-C16 Aliphatic               | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C16-C21 Aliphatic               | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C21-C35 Aliphatic               | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| C6-C7 Aromatic                   | mg/kg | NAM/ACSE/X0  | 7 AR        | < 0.10 |     |           |
| C7-C8 Aromatic                   | mg/kg | NAM/ACSE/X0  | 7 AR        | < 0.10 |     |           |
| >C8-C10 Aromatic                 | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C10-C12 Aromatic                | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C12-C16 Aromatic                | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C16-C21 Aromatic                | mg/kg | NAM/ACSE/X0  | 7 AR        | < 10.0 |     |           |
| >C21-C35 Aromatic                | mg/kg | NAM/ACSE/X0  | 7 AR        | 105    |     |           |
| Total Speciated TPH              | mg/kg | NAM/ACSE/X0  | 7 AR        | 105    |     |           |

**Head Office** Unit 14B Blackhill Road West

Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 13 of 14

Certificate No. 18-09563-Issue 1-Page: 14
Site Address Poole Park Minature Railway



# **Technical Information for Analytical Results**

#### **Analysis**

\* - denotes analysis covered by our UKAS accreditation

# - denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition

AR = Sample tested in as-received condition.

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

All MCERTS certified test values reported on a dry weight basis.

UKAS uncertainty available on request.

Where results are less than the limit of detection, the value of 0 is used in calculations.

### **Deviating Codes**

**Deviating Samples** 

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample taken

- a The date and /or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable holding time(s)\*.
- b The test item was received in a container which has not been recommended\*
- c On receipt, the temperature of the sample received was found to fall outside the recommendations of BS ISO 18512:2007, Soil Quality. Guidance on long and short term storage of soil samples\*.
- d The sample was received in a container that had not been filled as recommended\*
- e The delay between sampling and sample receipt is greater than the recommended holding time for the analyte of interest in this matrix\*.
- f The delay between sampling and analysis is greater than the recommended holding time for the analyte of interest in this matrix\*.

\*In accordance with the requirements of Technical Policy Statement TPS 63; UKAS Policy on Deviating Samples, all UKAS accredited testing laboratories are required to notify their clients that calibration or test results may be invalid where samples are found to be deviating. It is the opinion of ACSE that the term invalid should be interpreted as 'not fully representative of the sample taken at source'.

The following Additional Deviating Sample Codes may also be used.

I/S - Insufficient sample mass/volume received for accurate quantification of this analyte.

U/S - The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available

Head Office Registered Office
Unit 14B Unit 14B
Blackhill Road West
Holton Heath Trading Park
Registered Office
Unit 14B
Blackhill Road West
Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

Tel 01202 628680 ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 14 of 14

ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE



# Certificate of Analysis Landfill Waste Acceptance Criteria (WAC) (10:1)

Certificate Number: 18-09563-Issue 1-Page: 1

Site Address: Poole Park Minature Railway

Customer Order No: 18-97284

**Date of Sampling:** 01/10/2018

**Date Received:** 15/10/2018

**Report Date:** 15/11/2018

Please find your certificates of test attached for your samples received in the laboratory on 15/10/2018 under our laboratory reference 18-09563.

Remarks:

None

Results reviewed by:

Eoin Byrne Technical Supervisor

Results approved by:

David Redfern Technical Supervisor

Any opinions or interpretations indicated are outside the scope of our UKAS accreditation.

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Excel copies of reports are valid only when accompanied by this PDF certificate.

Client's Sample Description / ACS Material Description are noted for reference only.

Head Office Registered Office

Unit 14B Unit 14B

Blackhill Road West
Holton Heath Trading Park
Holton Heath Trading Park

Poole Poo Dorset BH16 6LE Dors

Dorset BH16 6LE

ACS Environmental Testing Limited

Tel 01202 628680 Registered in England and Wales No. 6000065

Fax 01202 628642

Quality Testing & Materials Consultancy to the Construction Industry



Page: 1 of 11 4150

Certificate No. 18-09563-Issue 1-Page: 2
Site Address Poole Park Minature Railway

ACSE Sample Number 38167

Sample ID 426801 - 18-97284

Clients Sample Ref. TP01

Material Source In Situ

Location / Sample Depth (m) 0.23-0.42m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description

ACS Testing Material Description Brown sandy GRAVEL

Principal Matrix (as received) GRAVEL



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |      |   |                               |       |        |  |  |
|------------------------------------------|------|---|-------------------------------|-------|--------|--|--|
| TEST VALUES                              |      |   |                               |       |        |  |  |
| Mass of Undried Test Portion (Mw)        | 93.3 | g | Volume of Leachant Used (L10) | 0.897 | litres |  |  |
| Mass of Dried Test Portion (Mp)          | 90.0 | g |                               |       |        |  |  |
| Moisture Content Ratio (MC)              | 3.6  | % | Volume of Eluate (VE10)       | 0.853 | litres |  |  |
| Dry Matter Content (DR)                  | 96.5 | % |                               |       |        |  |  |

| Analyte                         | Method      | AS  | Sample Condition for | Results  |
|---------------------------------|-------------|-----|----------------------|----------|
|                                 |             |     | Analysis             |          |
|                                 |             |     |                      |          |
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received          | 1.55     |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30°C    | 2.1      |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received          | < 0.60   |
| PCBs (7 congeners) (mg/kg)      | MT/ACSE/104 | *   | Air dried at 30°C    | < 1.00   |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *   | As received          | 363      |
| PAHs (mg/kg)                    | MT/ACSE/106 | *f  | Air dried at 30°C    | 33.3     |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30°C    | 10.6     |
| ELUATE ANALYSIS                 |             |     |                      |          |
| Analyte                         | Method      | AS  | Concentration in     | Amount   |
|                                 |             |     | Eluate               | Leached  |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)               | (mg/kg)  |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10               | L/S 10   |
| pH (units)                      | MT/ACSE/301 | *   | 11.0                 |          |
| Temperature (°C)                | MT/ACSE/301 |     | 20                   |          |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 52.20                |          |
| Arsenic                         | MT/ACSE/205 | *   | < 0.003              | < 0.0300 |
| Barium                          | MT/ACSE/205 | *   | 0.0909               | 0.909    |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008             | < 0.008  |
| Chromium (total)                | MT/ACSE/205 | *   | 0.021                | 0.207    |
| Copper                          | MT/ACSE/205 | *   | 0.050                | 0.499    |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001             | < 0.0010 |
| Molybdenum                      | MT/ACSE/205 | *   | 0.0017               | 0.017    |
| Nickel                          | MT/ACSE/205 | *   | 0.0030               | 0.030    |
| Lead                            | MT/ACSE/205 | *   | < 0.004              | < 0.040  |
| Antimony                        | MT/ACSE/205 | *   | < 0.003              | < 0.030  |
| Selenium                        | MT/ACSE/205 | *   | < 0.006              | < 0.060  |
| Zinc                            | MT/ACSE/205 | *   | < 0.002              | < 0.020  |
| Chloride                        | MT/ACSE/204 | *   | 8.59                 | 85.92    |
| Fluoride                        | MT/ACSE/204 | *   | < 0.01               | < 0.050  |
| Sulphate                        | MT/ACSE/204 | *   | 8.03                 | 80.26    |
| Total dissolved solids          | MT/ACSE/304 | *   | 170                  | 1700     |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05               | < 0.50   |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 7.81                 | 78.10    |

| LANDFILL WASTE | LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION                          |                    |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |  |  |  |  |  |
| 3 %            | 5 %                                                                       | 6 %                |  |  |  |  |  |
|                |                                                                           | 10 %               |  |  |  |  |  |
| 6              |                                                                           |                    |  |  |  |  |  |
| 1              |                                                                           |                    |  |  |  |  |  |
| 500            |                                                                           |                    |  |  |  |  |  |
| 100            |                                                                           |                    |  |  |  |  |  |
|                | >6                                                                        |                    |  |  |  |  |  |

| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
|----------------|---------------------------------------------------------------------------|--------------------|
| BS EN 12457-2  | -2002 LIMIT VALUES (                                                      | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

Comments: (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 3
Site Address Poole Park Minature Railway

ACSE Sample Number 38169

Sample ID 426803 - 18-97284

Clients Sample Ref. TP02

Material Source In Situ

Location / Sample Depth (m) 0.21-0.63m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description

ACS Testing Material Description Brown sandy GRAVEL

Principal Matrix (as received) GRAVEL



| Timolpan matrix (as received) (11)       | 7VLL |   |                               |       |        |  |  |  |  |
|------------------------------------------|------|---|-------------------------------|-------|--------|--|--|--|--|
| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |      |   |                               |       |        |  |  |  |  |
| TEST VALUES                              |      |   |                               |       |        |  |  |  |  |
| Mass of Undried Test Portion (Mw)        | 93.8 | g | Volume of Leachant Used (L10) | 0.896 | litres |  |  |  |  |
| Mass of Dried Test Portion (Mp)          | 90.0 | g |                               |       |        |  |  |  |  |
| Moisture Content Ratio (MC)              | 4.2  | % | Volume of Eluate (VE10)       | 0.847 | litres |  |  |  |  |
| Dry Matter Content (DR)                  | 96.0 | % |                               |       |        |  |  |  |  |

| Analyte                         | Method      | AS  | Sample Condition for<br>Analysis | Results           |
|---------------------------------|-------------|-----|----------------------------------|-------------------|
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received                      | 1.82              |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30°C                | 2.7               |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received                      | < 0.60            |
| PCBs (7 congeners) (mg/kg)      | MT/ACSE/104 | *   | Air dried at 30°C                | < 1.00            |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *   | As received                      | 1000              |
| PAHs (mg/kg)                    | MT/ACSE/106 | *f  | Air dried at 30°C                | 59.0              |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30°C                | 10.6              |
| ELUATE ANALYSIS                 |             |     |                                  |                   |
| Analyte                         | Method      | AS  | Concentration in Eluate          | Amount<br>Leached |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)                           | (mg/kg)           |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10                           | L/S 10            |
| pH (units)                      | MT/ACSE/301 | *   | 10.7                             |                   |
| Temperature (°C)                | MT/ACSE/301 |     | 20                               |                   |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 23.10                            |                   |
| Arsenic                         | MT/ACSE/205 | *   | 0.006                            | 0.0590            |
| Barium                          | MT/ACSE/205 | *   | 0.108                            | 1.083             |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008                         | < 0.008           |
| Chromium (total)                | MT/ACSE/205 | *   | 0.007                            | 0.068             |
| Copper                          | MT/ACSE/205 | *   | 0.035                            | 0.351             |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001                         | < 0.0010          |
| Molybdenum                      | MT/ACSE/205 | *   | 0.0037                           | 0.037             |
| Nickel                          | MT/ACSE/205 | *   | 0.0053                           | 0.053             |
| Lead                            | MT/ACSE/205 | *   | < 0.004                          | < 0.040           |
| Antimony                        | MT/ACSE/205 | *   | < 0.003                          | < 0.030           |
| Selenium                        | MT/ACSE/205 | *   | < 0.006                          | < 0.060           |
| Zinc                            | MT/ACSE/205 | *   | < 0.002                          | < 0.020           |
| Chloride                        | MT/ACSE/204 | *   | 7.78                             | 77.80             |
| Fluoride                        | MT/ACSE/204 | *   | < 0.01                           | < 0.050           |
| Sulphate                        | MT/ACSE/204 | *   | 15.69                            | 156.9             |
| Total dissolved solids          | MT/ACSE/304 | *   | 165                              | 1650              |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05                           | < 0.50            |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 19.8                             | 197.9             |

| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
|----------------|---------------------------------------------------------------------------|--------------------|
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 3 %            | 5 %                                                                       | 6 %                |
|                |                                                                           | 10 %               |
| 6              |                                                                           |                    |
| 1              |                                                                           |                    |
| 500            |                                                                           |                    |
| 100            |                                                                           |                    |
|                | >6                                                                        |                    |

| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
|----------------|---------------------------------------------------------------------------|--------------------|
| BS EN 12457-   | 2-2002 LIMIT VALUES (                                                     | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

**Comments:** (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 4
Site Address Poole Park Minature Railway

ACSE Sample Number 38171

Sample ID 426805 - 18-97284

Clients Sample Ref.TP05Material SourceIn SituLocation / Sample Depth (m)0.00-0.66m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description

ACS Testing Material Description Brown gravelly silty SAND

Principal Matrix (as received) SILT



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |      |   |                               |                        |             |  |  |  |
|------------------------------------------|------|---|-------------------------------|------------------------|-------------|--|--|--|
| TEST VALUES                              |      |   |                               |                        |             |  |  |  |
| Mass of Undried Test Portion (Mw)        | 96.5 | g | Volume of Leachant Used (L10) | 0.894                  | litres      |  |  |  |
| Mass of Dried Test Portion (Mp)          | 90.0 | g |                               |                        |             |  |  |  |
| Moisture Content Ratio (MC)              | 7.2  | % | Volume of Eluate (VE10)       | 0.861                  | litres      |  |  |  |
| Dry Matter Content (DR)                  | 93.3 | % |                               |                        |             |  |  |  |
| COLUDE ANALYSIS                          |      |   | LANDELL WASTE                 | ACCEPTANCE CRITERIA SR | FOIFICATION |  |  |  |

| SOLIDS ANALYSIS Analyte         | Method      | AS  | Sample Condition for | Results  |
|---------------------------------|-------------|-----|----------------------|----------|
| ,                               |             |     | Analysis             |          |
|                                 |             |     |                      |          |
|                                 |             |     |                      |          |
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received          | 1.49     |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30 ℃    | 3.2      |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received          | < 0.60   |
| PCBs (7 congeners) (mg/kg)      | MT/ACSE/104 | *   | Air dried at 30℃     | < 1.00   |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *#  | As received          | 256      |
| PAHs (mg/kg)                    | MT/ACSE/106 | *#f | Air dried at 30℃     | 134      |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30℃     | 7.3      |
| ELUATE ANALYSIS                 |             |     |                      |          |
| Analyte                         | Method      | AS  | Concentration in     | Amount   |
|                                 |             |     | Eluate               | Leached  |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)               | (mg/kg)  |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10               | L/S 10   |
| pH (units)                      | MT/ACSE/301 | *   | 9.2                  |          |
| Temperature (°C)                | MT/ACSE/301 |     | 20                   |          |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 6.59                 |          |
| Arsenic                         | MT/ACSE/205 | *   | < 0.003              | < 0.0300 |
| Barium                          | MT/ACSE/205 | *   | 0.0800               | 0.800    |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008             | < 0.008  |
| Chromium (total)                | MT/ACSE/205 | *   | 0.002                | 0.024    |
| Copper                          | MT/ACSE/205 | *   | 0.022                | 0.219    |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001             | < 0.0010 |
| Molybdenum                      | MT/ACSE/205 | *   | < 0.0010             | < 0.010  |
| Nickel                          | MT/ACSE/205 | *   | < 0.0008             | < 0.008  |
| Lead                            | MT/ACSE/205 | *   | < 0.004              | < 0.040  |
| Antimony                        | MT/ACSE/205 | *   | < 0.003              | < 0.030  |
| Selenium                        | MT/ACSE/205 | *   | 0.007                | 0.071    |
| Zinc                            | MT/ACSE/205 | *   | 0.020                | 0.200    |
| Chloride                        | MT/ACSE/204 | *   | < 3.00               | < 30.00  |
| Fluoride                        | MT/ACSE/204 | *   | 0.22                 | 2.172    |
| Sulphate                        | MT/ACSE/204 | *   | 4.66                 | 46.62    |
| Total dissolved solids          | MT/ACSE/304 | *   | 70                   | 700.0    |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05               | < 0.50   |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 13.9                 | 139.2    |

| LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION |                                                                           |                    |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------|--|--|--|
| Inert Waste                                      | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |  |  |  |
| 3 %                                              | 5 %                                                                       | 6 %                |  |  |  |
|                                                  |                                                                           | 10 %               |  |  |  |
| 6                                                |                                                                           |                    |  |  |  |
| 1                                                |                                                                           |                    |  |  |  |
| 500                                              |                                                                           |                    |  |  |  |
| 100                                              |                                                                           |                    |  |  |  |
|                                                  | >6                                                                        |                    |  |  |  |

| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
|----------------|---------------------------------------------------------------------------|--------------------|
| BS EN 12457-2  | 2-2002 LIMIT VALUES (                                                     | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

**Comments:** (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 5
Site Address Poole Park Minature Railway

ACSE Sample Number 38173

Sample ID 426807 - 18-97284

 Clients Sample Ref.
 TP07

 Material Source
 In Situ

 Location / Sample Depth (m)
 0.08-0.32m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description

ACS Testing Material Description Brown gravelly SAND

Principal Matrix (as received) SAND



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |      |   |                               |       |        |  |  |
|------------------------------------------|------|---|-------------------------------|-------|--------|--|--|
| TEST VALUES                              |      |   |                               |       |        |  |  |
| Mass of Undried Test Portion (Mw)        | 93.4 | g | Volume of Leachant Used (L10) | 0.897 | litres |  |  |
| Mass of Dried Test Portion (Mp)          | 90.0 | g |                               |       |        |  |  |
| Moisture Content Ratio (MC)              | 3.7  | % | Volume of Eluate (VE10)       | 0.851 | litres |  |  |
| Dry Matter Content (DR)                  | 96.4 | % |                               |       |        |  |  |

| Analyte                         | Method      | AS  | Sample Condition for<br>Analysis | Results           |
|---------------------------------|-------------|-----|----------------------------------|-------------------|
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received                      | 0.95              |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30°C                | 2.2               |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received                      | < 0.60            |
| PCBs (7 congeners) (mg/kg)      | IHP-GCMS    |     | Air dried at 30°C                | < 1.00            |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *#  | As received                      | 384               |
| PAHs (mg/kg)                    | MT/ACSE/106 | *#f | Air dried at 30°C                | 19.6              |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30°C                | 6.7               |
| ELUATE ANALYSIS                 |             |     |                                  |                   |
| Analyte                         | Method      | AS  | Concentration in<br>Eluate       | Amount<br>Leached |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)                           | (mg/kg)           |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10                           | L/S 10            |
| pH (units)                      | MT/ACSE/301 | *   | 8.7                              |                   |
| Temperature (°C)                | MT/ACSE/301 |     | 20                               |                   |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 14.54                            |                   |
| Arsenic                         | MT/ACSE/205 | *   | < 0.003                          | < 0.0300          |
| Barium                          | MT/ACSE/205 | *   | 0.102                            | 1.021             |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008                         | < 0.008           |
| Chromium (total)                | MT/ACSE/205 | *   | 0.003                            | 0.035             |
| Copper                          | MT/ACSE/205 | *   | < 0.008                          | < 0.080           |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001                         | < 0.0010          |
| Molybdenum                      | MT/ACSE/205 | *   | 0.0012                           | 0.012             |
| Nickel                          | MT/ACSE/205 | *   | 0.0019                           | 0.019             |
| Lead                            | MT/ACSE/205 | *   | < 0.004                          | < 0.040           |
| Antimony                        | MT/ACSE/205 | *   | < 0.003                          | < 0.030           |
| Selenium                        | MT/ACSE/205 | *   | < 0.006                          | < 0.060           |
| Zinc                            | MT/ACSE/205 | *   | < 0.002                          | < 0.020           |
| Chloride                        | MT/ACSE/204 | *   | < 3.00                           | < 30.00           |
| Fluoride                        | MT/ACSE/204 | *   | 0.19                             | 1.897             |
| Sulphate                        | MT/ACSE/204 | *   | 17.97                            | 179.7             |
| Total dissolved solids          | MT/ACSE/304 | *   | 130                              | 1300              |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05                           | < 0.50            |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 7.99                             | 79.90             |

| LANDFILL WASTE | LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION                          |                    |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |  |  |  |  |  |
| 3 %            | 5 %                                                                       | 6 %                |  |  |  |  |  |
|                |                                                                           | 10 %               |  |  |  |  |  |
| 6              |                                                                           |                    |  |  |  |  |  |
| 1              |                                                                           |                    |  |  |  |  |  |
| 500            |                                                                           |                    |  |  |  |  |  |
| 100            |                                                                           |                    |  |  |  |  |  |
|                | >6                                                                        |                    |  |  |  |  |  |

| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
|----------------|---------------------------------------------------------------------------|--------------------|
| BS EN 12457-2  | 2-2002 LIMIT VALUES (                                                     | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

**Comments:** (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 6
Site Address Poole Park Minature Railway

ACSE Sample Number 38174

Sample ID 426808 - 18-97284

Clients Sample Ref. TP07

Material Source In Situ

Location / Sample Depth (m) 0.47-0.74m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description

ACS Testing Material Description Dark brown mottled dark grey sandy PEAT

Principal Matrix (as received) PEAT



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |       |   |                               |       |        |  |  |
|------------------------------------------|-------|---|-------------------------------|-------|--------|--|--|
| TEST VALUES                              |       |   |                               |       |        |  |  |
| Mass of Undried Test Portion (Mw)        | 182.3 | g | Volume of Leachant Used (L10) | 0.808 | litres |  |  |
| Mass of Dried Test Portion (Mp)          | 90.0  | g |                               |       |        |  |  |
| Moisture Content Ratio (MC)              | 103   | % | Volume of Eluate (VE10)       | 0.795 | litres |  |  |
| Dry Matter Content (DR)                  | 49.4  | % |                               |       |        |  |  |

| Analyte                         | Method      | AS  | Sample Condition for<br>Analysis | Results           |
|---------------------------------|-------------|-----|----------------------------------|-------------------|
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received                      | 4.34              |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30 ℃                | 22                |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received                      | < 0.60            |
| PCBs (7 congeners) (mg/kg)      | IHP-GCMS    |     | Air dried at 30 ℃                | < 1.00            |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *   | As received                      | 114               |
| PAHs (mg/kg)                    | MT/ACSE/106 | *f  | Air dried at 30 ℃                | 5.63              |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30 ℃                | 5.7               |
| ELUATE ANALYSIS                 | ,           |     |                                  |                   |
| Analyte                         | Method      | AS  | Concentration in Eluate          | Amount<br>Leached |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)                           | (mg/kg)           |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10                           | L/S 10            |
| pH (units)                      | MT/ACSE/301 | *   | 8.5                              |                   |
| Temperature (°C)                | MT/ACSE/301 |     | 20                               |                   |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 32.60                            |                   |
| Arsenic                         | MT/ACSE/205 | *   | < 0.003                          | < 0.0300          |
| Barium                          | MT/ACSE/205 | *   | 0.446                            | 4.459             |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008                         | < 0.008           |
| Chromium (total)                | MT/ACSE/205 | *   | 0.004                            | 0.044             |
| Copper                          | MT/ACSE/205 | *   | < 0.008                          | < 0.080           |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001                         | < 0.0010          |
| Molybdenum                      | MT/ACSE/205 | *   | < 0.0010                         | < 0.010           |
| Nickel                          | MT/ACSE/205 | *   | 0.0016                           | 0.016             |
| Lead                            | MT/ACSE/205 | *   | < 0.004                          | < 0.040           |
| Antimony                        | MT/ACSE/205 | *   | < 0.003                          | < 0.030           |
| Selenium                        | MT/ACSE/205 | *   | 0.016                            | 0.161             |
| Zinc                            | MT/ACSE/205 | *   | 0.055                            | 0.548             |
| Chloride                        | MT/ACSE/204 | *   | 9.96                             | 99.58             |
| Fluoride                        | MT/ACSE/204 | *   | 0.18                             | 1.810             |
| Sulphate                        | MT/ACSE/204 | *   | 137.9                            | 1379              |
| Total dissolved solids          | MT/ACSE/304 | *   | 220                              | 2200              |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05                           | < 0.50            |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 18.5                             | 185.0             |

| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
|----------------|---------------------------------------------------------------------------|--------------------|
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 3 %            | 5 %                                                                       | 6 %                |
|                |                                                                           | 10 %               |
| 6              |                                                                           |                    |
| 1              |                                                                           |                    |
| 500            |                                                                           |                    |
| 100            |                                                                           |                    |
|                | >6                                                                        |                    |

| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
|----------------|---------------------------------------------------------------------------|--------------------|
| BS EN 12457-2  | -2002 LIMIT VALUES (                                                      | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

**Comments:** (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 7
Site Address Poole Park Minature Railway

ACSE Sample Number 38176

Sample ID 426810 - 18-97284

 Clients Sample Ref.
 TP09

 Material Source
 In Situ

 Location / Sample Depth (m)
 0.00-0.39m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description ACS Testing Material Description

Brown gravelly silty SAND

Principal Matrix (as received) SILT



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |      |   |                               |       |        |  |  |
|------------------------------------------|------|---|-------------------------------|-------|--------|--|--|
| TEST VALUES                              |      |   |                               |       |        |  |  |
| Mass of Undried Test Portion (Mw)        | 93.2 | g | Volume of Leachant Used (L10) | 0.897 | litres |  |  |
| Mass of Dried Test Portion (Mp)          | 90.0 | g |                               |       |        |  |  |
| Moisture Content Ratio (MC)              | 3.6  | % | Volume of Eluate (VE10)       | 0.843 | litres |  |  |
| Dry Matter Content (DR)                  | 96.6 | % |                               |       |        |  |  |

| Analyte                           | Method                     | AS       | Sample Condition for<br>Analysis | Results           |
|-----------------------------------|----------------------------|----------|----------------------------------|-------------------|
| Total Organic Carbon (%)          | MT/ACSE/102                | *        | As received                      | 2.03              |
|                                   | MT/ACSE/302                | *f       | Air dried at 30 °C               | 7.2               |
| Loss on ignition (%) BTEX (mg/kg) | MT/ACSE/302<br>MT/ACSE/101 | *ef      | As received                      | < 0.60            |
| PCBs (7 congeners) (mg/kg)        | MT/ACSE/101                | *        | As received Air dried at 30 ℃    |                   |
|                                   | MT/ACSE/104                | *#       | As received                      | < 1.00            |
| Mineral oil (C10 - C40) (mg/kg)   | MT/ACSE/106                | #<br>*#f | As received Air dried at 30 ℃    | < 50.0<br>11.4    |
| PAHs (mg/kg)                      | MT/ACSE/106<br>MT/ACSE/301 | *ef      |                                  | 6.6               |
| pH (units)                        | WIT/AGSE/301               | еі       | Air dried at 30 ℃                | 0.0               |
| ELUATE ANALYSIS                   |                            | _        |                                  |                   |
| Analyte                           | Method                     | AS       | Concentration in Eluate          | Amount<br>Leached |
| Eluate Preparation                | LP/ACSE/104                |          | (mg/l)                           | (mg/kg)           |
| Liquid : Solid Ratio (L/S)        | LP/ACSE/101                | *        | L/S 10                           | L/S 10            |
| pH (units)                        | MT/ACSE/301                | *        | 8.7                              |                   |
| Temperature (°C)                  | MT/ACSE/301                |          | 20                               |                   |
| Conductivity (mS/m)               | MT/ACSE/303                | *        | 6.85                             |                   |
| Arsenic                           | MT/ACSE/205                | *        | < 0.003                          | < 0.0300          |
| Barium                            | MT/ACSE/205                | *        | 0.0970                           | 0.970             |
| Cadmium                           | MT/ACSE/205                | *        | < 0.0008                         | < 0.008           |
| Chromium (total)                  | MT/ACSE/205                | *        | 0.003                            | 0.030             |
| Copper                            | MT/ACSE/205                | *        | 0.026                            | 0.257             |
| Mercury                           | MT/ACSE/202                | *        | < 0.0001                         | < 0.0010          |
| Molybdenum                        | MT/ACSE/205                | *        | 0.0021                           | 0.021             |
| Nickel                            | MT/ACSE/205                | *        | 0.0021                           | 0.021             |
| Lead                              | MT/ACSE/205                | *        | 0.014                            | 0.137             |
| Antimony                          | MT/ACSE/205                | *        | < 0.003                          | < 0.030           |
| Selenium                          | MT/ACSE/205                | *        | < 0.006                          | < 0.060           |
| Zinc                              | MT/ACSE/205                | *        | 0.010                            | 0.095             |
| Chloride                          | MT/ACSE/204                | *        | 3.83                             | 38.28             |
| Fluoride                          | MT/ACSE/204                | *        | 0.12                             | 1.173             |
| Sulphate                          | MT/ACSE/204                | *        | 10.88                            | 108.8             |
| Total dissolved solids            | MT/ACSE/304                | *        | 45                               | 450.0             |
| Phenol index                      | MT/ACSE/107                | *        | < 0.05                           | < 0.50            |
| Dissolved organic carbon          | MT/ACSE/103                | *        | 10.8                             | 108.2             |

| LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION |                                                                           |                    |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------|--|--|--|
| Inert Waste                                      | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |  |  |  |
| 3 %                                              | 5 %                                                                       | 6 %                |  |  |  |
|                                                  |                                                                           | 10 %               |  |  |  |
| 6                                                |                                                                           |                    |  |  |  |
| 1                                                |                                                                           |                    |  |  |  |
| 500                                              |                                                                           |                    |  |  |  |
| 100                                              |                                                                           |                    |  |  |  |
|                                                  | >6                                                                        |                    |  |  |  |

|                | >0                                                                        |                    |
|----------------|---------------------------------------------------------------------------|--------------------|
|                |                                                                           |                    |
| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
| BS EN 12457-2  | -2002 LIMIT VALUES (                                                      | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

**Comments:** (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 8
Site Address Poole Park Minature Railway

ACSE Sample Number 38178

Sample ID 426812 - 18-97284

 Clients Sample Ref.
 TP11

 Material Source
 In Situ

 Location / Sample Depth (m)
 0.00-0.21m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description

ACS Testing Material Description Brown sandy gravelly SILT

Principal Matrix (as received) SILT



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |       |   |                               |                        |             |  |
|------------------------------------------|-------|---|-------------------------------|------------------------|-------------|--|
| TEST VALUES                              |       |   |                               |                        |             |  |
| Mass of Undried Test Portion (Mw)        | 102.2 | g | Volume of Leachant Used (L10) | 0.888                  | litres      |  |
| Mass of Dried Test Portion (Mp)          | 90.0  | g |                               |                        |             |  |
| Moisture Content Ratio (MC)              | 13.6  | % | Volume of Eluate (VE10)       | 0.835                  | litres      |  |
| Dry Matter Content (DR)                  | 88.0  | % |                               |                        |             |  |
| SOLIDS ANALYSIS                          |       |   | LANDFILL WASTE                | ACCEPTANCE CRITERIA SP | ECIFICATION |  |

| Analyte                         | Method      | AS  | Sample Condition for<br>Analysis | Results           |
|---------------------------------|-------------|-----|----------------------------------|-------------------|
|                                 |             |     |                                  |                   |
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received                      | 6.55              |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30°C                | 8.9               |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received                      | < 0.60            |
| PCBs (7 congeners) (mg/kg)      | MT/ACSE/104 | *   | Air dried at 30℃                 | < 1.00            |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *#  | As received                      | 410               |
| PAHs (mg/kg)                    | MT/ACSE/106 | *#f | Air dried at 30°C                | 18.2              |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30°C                | 6.9               |
| ELUATE ANALYSIS                 |             |     |                                  |                   |
| Analyte                         | Method      | AS  | Concentration in Eluate          | Amount<br>Leached |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)                           | (mg/kg)           |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10                           | L/S 10            |
| pH (units)                      | MT/ACSE/301 | *   | 8.4                              |                   |
| Temperature (°C)                | MT/ACSE/301 |     | 20                               |                   |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 11.02                            |                   |
| Arsenic                         | MT/ACSE/205 | *   | < 0.003                          | < 0.0300          |
| Barium                          | MT/ACSE/205 | *   | 0.170                            | 1.702             |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008                         | < 0.008           |
| Chromium (total)                | MT/ACSE/205 | *   | 0.003                            | 0.031             |
| Copper                          | MT/ACSE/205 | *   | 0.036                            | 0.365             |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001                         | < 0.0010          |
| Molybdenum                      | MT/ACSE/205 | *   | 0.0014                           | 0.014             |
| Nickel                          | MT/ACSE/205 | *   | 0.0058                           | 0.058             |
| Lead                            | MT/ACSE/205 | *   | < 0.004                          | < 0.040           |
| Antimony                        | MT/ACSE/205 | *   | < 0.003                          | < 0.030           |
| Selenium                        | MT/ACSE/205 | *   | 0.010                            | 0.096             |
| Zinc                            | MT/ACSE/205 | *   | 0.028                            | 0.276             |
| Chloride                        | MT/ACSE/204 | *   | 9.12                             | 91.23             |
| Fluoride                        | MT/ACSE/204 | *   | 0.61                             | 6.124             |
| Sulphate                        | MT/ACSE/204 | *   | 4.61                             | 46.07             |
| Total dissolved solids          | MT/ACSE/304 | *   | 65                               | 650.0             |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05                           | < 0.50            |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 17.2                             | 172.1             |

| LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION |                                                                           |                    |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------|--|--|--|
| Inert Waste                                      | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |  |  |  |
| 3 %                                              | 5 %                                                                       | 6 %                |  |  |  |
|                                                  |                                                                           | 10 %               |  |  |  |
| 6                                                |                                                                           |                    |  |  |  |
| 1                                                |                                                                           |                    |  |  |  |
| 500                                              |                                                                           |                    |  |  |  |
| 100                                              |                                                                           |                    |  |  |  |
|                                                  | >6                                                                        |                    |  |  |  |

|                | /0                                                                        |                    |
|----------------|---------------------------------------------------------------------------|--------------------|
|                |                                                                           |                    |
| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
| BS EN 12457-2  | -2002 LIMIT VALUES (                                                      | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

Comments: (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 9
Site Address Poole Park Minature Railway

ACSE Sample Number 38180

Sample ID 426814 - 18-97284

 Clients Sample Ref.
 TP13

 Material Source
 In Situ

 Location / Sample Depth (m)
 0.00-0.64m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description
ACS Testing Material Description

Multicoloured gravelly SAND

Principal Matrix (as received) SAND



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |      |   |                               |       |        |  |
|------------------------------------------|------|---|-------------------------------|-------|--------|--|
| TEST VALUES                              |      |   |                               |       |        |  |
| Mass of Undried Test Portion (Mw)        | 90.0 | g | Volume of Leachant Used (L10) | 0.900 | litres |  |
| Mass of Dried Test Portion (Mp)          | 90.0 | g |                               |       |        |  |
| Moisture Content Ratio (MC)              | 0.0  | % | Volume of Eluate (VE10)       | 0.846 | litres |  |
| Dry Matter Content (DR)                  | 100  | % |                               |       |        |  |

| SOLIDS ANALYSIS Analyte         | Method      | AS  | Sample Condition for | Results  |
|---------------------------------|-------------|-----|----------------------|----------|
| ,                               |             |     | Analysis             |          |
|                                 |             |     |                      |          |
|                                 |             |     |                      |          |
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received          | 2.55     |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30 ℃    | 2.1      |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received          | < 0.60   |
| PCBs (7 congeners) (mg/kg)      | MT/ACSE/104 | *   | Air dried at 30℃     | < 1.00   |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *#  | As received          | 423      |
| PAHs (mg/kg)                    | MT/ACSE/106 | *#f | Air dried at 30℃     | 19.8     |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30℃     | 7.0      |
| ELUATE ANALYSIS                 |             |     |                      |          |
| Analyte                         | Method      | AS  | Concentration in     | Amount   |
| •                               |             |     | Eluate               | Leached  |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)               | (mg/kg)  |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10               | L/S 10   |
| pH (units)                      | MT/ACSE/301 | *   | 8.7                  |          |
| Temperature (°C)                | MT/ACSE/301 |     | 20                   |          |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 4.34                 |          |
| Arsenic                         | MT/ACSE/205 | *   | < 0.003              | < 0.0300 |
| Barium                          | MT/ACSE/205 | *   | 0.0715               | 0.715    |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008             | < 0.008  |
| Chromium (total)                | MT/ACSE/205 | *   | 0.002                | 0.023    |
| Copper                          | MT/ACSE/205 | *   | 0.015                | 0.145    |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001             | < 0.0010 |
| Molybdenum                      | MT/ACSE/205 | *   | 0.0024               | 0.024    |
| Nickel                          | MT/ACSE/205 | *   | 0.0020               | 0.020    |
| Lead                            | MT/ACSE/205 | *   | < 0.004              | < 0.040  |
| Antimony                        | MT/ACSE/205 | *   | < 0.003              | < 0.030  |
| Selenium                        | MT/ACSE/205 | *   | < 0.006              | < 0.060  |
| Zinc                            | MT/ACSE/205 | *   | < 0.002              | < 0.020  |
| Chloride                        | MT/ACSE/204 | *   | < 3.00               | < 30.00  |
| Fluoride                        | MT/ACSE/204 | *   | 0.52                 | 5.173    |
| Sulphate                        | MT/ACSE/204 | *   | < 3.00               | < 30.00  |
| Total dissolved solids          | MT/ACSE/304 | *   | < 25                 | < 100.0  |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05               | < 0.50   |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 7.31                 | 73.10    |

| LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION |                                                                           |                    |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------|--|--|--|
| Inert Waste                                      | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |  |  |  |
| 3 %                                              | 5 %                                                                       | 6 %                |  |  |  |
|                                                  |                                                                           | 10 %               |  |  |  |
| 6                                                |                                                                           |                    |  |  |  |
| 1                                                |                                                                           |                    |  |  |  |
| 500                                              |                                                                           |                    |  |  |  |
| 100                                              |                                                                           |                    |  |  |  |
|                                                  | >6                                                                        |                    |  |  |  |

|                | >0                                                                        |                    |
|----------------|---------------------------------------------------------------------------|--------------------|
|                |                                                                           |                    |
| LANDFILL WASTE | ACCEPTANCE CRITE                                                          | RIA SPECIFICATION  |
| BS EN 12457-2  | -2002 LIMIT VALUES (                                                      | mg/kg) at L/S 10   |
| Inert Waste    | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 0.5            | 2                                                                         | 25                 |
| 20             | 100                                                                       | 300                |
| 0.04           | 1                                                                         | 5                  |
| 0.5            | 10                                                                        | 70                 |
| 2              | 50                                                                        | 100                |
| 0.01           | 0.2                                                                       | 2                  |
| 0.5            | 10                                                                        | 30                 |
| 0.4            | 10                                                                        | 40                 |
| 0.5            | 10                                                                        | 50                 |
| 0.06           | 0.7                                                                       | 5                  |
| 0.1            | 0.5                                                                       | 7                  |
| 4              | 50                                                                        | 200                |
| 800            | 15000                                                                     | 25000              |
| 10             | 150                                                                       | 500                |
| 1000           | 20000                                                                     | 50000              |
| 4000           | 60000                                                                     | 100000             |
| 1              |                                                                           |                    |
| 500            | 800                                                                       | 1000               |

**Comments:** (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 10
Site Address Poole Park Minature Railway

ACSE Sample Number 38182

Sample ID 426816 - 18-97284

Clients Sample Ref. TP14

Material Source In Situ

Location / Sample Depth (m) 0.15-0.60m

Time Sampled

**Date Sampled** 01/10/2018

Sample Deviating Codes ef

Client's Sample Description ACS Testing Material Description

Grey sandy GRAVEL

Principal Matrix (as received) SAND



| LANDFILL WASTE ACCEPTANCE CRITERIA (WAC) |      |   |                               |       |        |  |
|------------------------------------------|------|---|-------------------------------|-------|--------|--|
| TEST VALUES                              |      |   |                               |       |        |  |
| Mass of Undried Test Portion (Mw)        | 90.7 | g | Volume of Leachant Used (L10) | 0.899 | litres |  |
| Mass of Dried Test Portion (Mp)          | 90.0 | g |                               |       |        |  |
| Moisture Content Ratio (MC)              | 0.8  | % | Volume of Eluate (VE10)       | 0.868 | litres |  |
| Dry Matter Content (DR)                  | 99.2 | % |                               |       |        |  |

| Analyte                         | Method      | AS  | Sample Condition for<br>Analysis | Results           |
|---------------------------------|-------------|-----|----------------------------------|-------------------|
|                                 |             |     |                                  |                   |
| Total Organic Carbon (%)        | MT/ACSE/102 | *   | As received                      | 15.4              |
| Loss on ignition (%)            | MT/ACSE/302 | *f  | Air dried at 30 °C               | 2.9               |
| BTEX (mg/kg)                    | MT/ACSE/101 | *ef | As received                      | < 0.60            |
| PCBs (7 congeners) (mg/kg)      | MT/ACSE/104 | *   | Air dried at 30 ℃                | < 1.00            |
| Mineral oil (C10 - C40) (mg/kg) | MT/ACSE/105 | *#  | As received                      | 152               |
| PAHs (mg/kg)                    | MT/ACSE/106 | *#f | Air dried at 30 ℃                | 36.2              |
| pH (units)                      | MT/ACSE/301 | *ef | Air dried at 30°C                | 7.2               |
| ELUATE ANALYSIS                 |             |     |                                  |                   |
| Analyte                         | Method      | AS  | Concentration in Eluate          | Amount<br>Leached |
| Eluate Preparation              | LP/ACSE/104 |     | (mg/l)                           | (mg/kg)           |
| Liquid : Solid Ratio (L/S)      | LP/ACSE/101 | *   | L/S 10                           | L/S 10            |
| pH (units)                      | MT/ACSE/301 | *   | 8.5                              |                   |
| Temperature (°C)                | MT/ACSE/301 |     | 20                               |                   |
| Conductivity (mS/m)             | MT/ACSE/303 | *   | 5.10                             |                   |
| Arsenic                         | MT/ACSE/205 | *   | < 0.003                          | < 0.0300          |
| Barium                          | MT/ACSE/205 | *   | 0.0730                           | 0.730             |
| Cadmium                         | MT/ACSE/205 | *   | < 0.0008                         | < 0.008           |
| Chromium (total)                | MT/ACSE/205 | *   | 0.003                            | 0.027             |
| Copper                          | MT/ACSE/205 | *   | 0.023                            | 0.233             |
| Mercury                         | MT/ACSE/202 | *   | < 0.0001                         | < 0.0010          |
| Molybdenum                      | MT/ACSE/205 | *   | 0.0023                           | 0.023             |
| Nickel                          | MT/ACSE/205 | *   | 0.0020                           | 0.020             |
| Lead                            | MT/ACSE/205 | *   | < 0.004                          | < 0.040           |
| Antimony                        | MT/ACSE/205 | *   | < 0.003                          | < 0.030           |
| Selenium                        | MT/ACSE/205 | *   | < 0.006                          | < 0.060           |
| Zinc                            | MT/ACSE/205 | *   | < 0.002                          | < 0.020           |
| Chloride                        | MT/ACSE/204 | *   | < 3.00                           | < 30.00           |
| Fluoride                        | MT/ACSE/204 | *   | 0.61                             | 6.137             |
| Sulphate                        | MT/ACSE/204 | *   | < 3.00                           | < 30.00           |
| Total dissolved solids          | MT/ACSE/304 | *   | 60                               | 600.0             |
| Phenol index                    | MT/ACSE/107 | *   | < 0.05                           | < 0.50            |
| Dissolved organic carbon        | MT/ACSE/103 | *   | 4.54                             | 45.40             |

| LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION |                                                                           |                    |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------|
| Inert Waste                                      | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |
| 3 %                                              | 5 %                                                                       | 6 %                |
|                                                  |                                                                           | 10 %               |
| 6                                                |                                                                           |                    |
| 1                                                |                                                                           |                    |
| 500                                              |                                                                           |                    |
| 100                                              |                                                                           |                    |
|                                                  | >6                                                                        |                    |

| LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION  |                                                                           |                    |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------|--------------------|--|--|
| BS EN 12457-2-2002 LIMIT VALUES (mg/kg) at L/S 10 |                                                                           |                    |  |  |
| Inert Waste                                       | Stable<br>non-reactive<br>hazardous waste<br>in non-hazardous<br>landfill | Hazardous<br>waste |  |  |
| 0.5                                               | 2                                                                         | 25                 |  |  |
| 20                                                | 100                                                                       | 300                |  |  |
| 0.04                                              | 1                                                                         | 5                  |  |  |
| 0.5                                               | 10                                                                        | 70                 |  |  |
| 2                                                 | 50                                                                        | 100                |  |  |
| 0.01                                              | 0.2                                                                       | 2                  |  |  |
| 0.5                                               | 10                                                                        | 30                 |  |  |
| 0.4                                               | 10                                                                        | 40                 |  |  |
| 0.5                                               | 10                                                                        | 50                 |  |  |
| 0.06                                              | 0.7                                                                       | 5                  |  |  |
| 0.1                                               | 0.5                                                                       | 7                  |  |  |
| 4                                                 | 50                                                                        | 200                |  |  |
| 800                                               | 15000                                                                     | 25000              |  |  |
| 10                                                | 150                                                                       | 500                |  |  |
| 1000                                              | 20000                                                                     | 50000              |  |  |
| 4000                                              | 60000                                                                     | 100000             |  |  |
| 1                                                 |                                                                           |                    |  |  |
| 500                                               | 800                                                                       | 1000               |  |  |

**Comments:** (comments are beyond the scope of UKAS accreditation)

Key (at clients request):

Individual test result exceeds the landfill waste acceptance criteria limit for inert waste.

Certificate No. 18-09563-Issue 1-Page: 11
Site Address Poole Park Minature Railway



# **Technical Information for Analytical Results**

## **Analysis**

\* - denotes analysis covered by our UKAS accreditation

# - denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition.

AR = Sample tested in as-received condition.

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

All MCERTS certified test values reported on a dry weight basis.

UKAS uncertainty available on request.

Where results are less than the limit of detection, the value of 0 is used in calculations.

For Phenol index, m- and p- cresol are reported as mixed isomers, calibrated with reference to a p-cresol reference solution.

The individual concentrations of m- and p- cresol cannot be quantified using this method, however, the result reported for the mixed isomers will be an over estimation of the true result in samples where m-cresol is present.

#### **Deviating Codes**

**Deviating Samples** 

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample taken.

- a The date and /or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable holding time(s)\*.
- b The test item was received in a container which has not been recommended\*
- c On receipt, the temperature of the sample received was found to fall outside the recommendations of BS ISO 18512:2007, Soil Quality. Guidance on long and short term storage of soil samples\*.
- d The sample was received in a container that had not been filled as recommended\*
- e The delay between sampling and sample receipt is greater than the recommended holding time for the analyte of interest in this matrix\*.
- f The delay between sampling and analysis is greater than the recommended holding time for the analyte of interest in this matrix\*.

\*In accordance with the requirements of Technical Policy Statement TPS 63; UKAS Policy on Deviating Samples, all UKAS accredited testing laboratories are required to notify their clients that calibration or test results may be invalid where samples are found to be deviating. It is the opinion of ACSE that the term invalid should be interpreted as 'not fully representative of the sample taken at source'.

The following Additional Deviating Sample Codes may also be used.

I/S - Insufficient sample mass/volume received for accurate quantification of this analyte.

 $\ensuremath{\mathsf{U/S}}-$  The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available

Head Office Registered Office
Unit 14B Unit 14B
Blackhill Road West
Holton Heath Trading Park
Poole Porset BH16 6LE
Registered Office
Unit 14B
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE

Tel 01202 628680 ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 11 of 11

Poole Park Miniature Railway – Borough of Poole Factual Report

# **APPENDIX C**

# **Photographic Record**



Photo 1: TP01 prior to excavation.





Photo 2: TP01 track bed





Photo 3: Bridge deck slab revealed within TP01





Photo 4 TP01 arisings



Photo 4: TP02 prior to excavation





Photo 5: Track bed revealed within TP02



Photo 6: Bridge deck slab revealed within TP02





Photo 7: TP03 prior to excavation.



Photo 8: Groundwater within TP03





Photo 9: TP03 arisings.

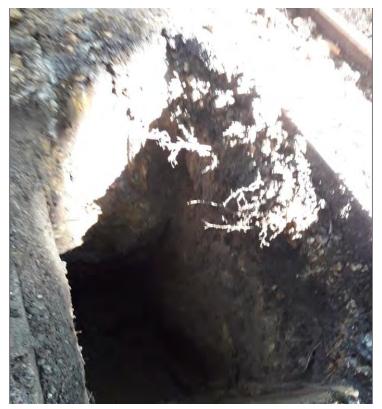



Photo 10: Track bed revealed within TP04





Photo 11: TP04 arisings



Photo 12: Track bed revealed within TP05





Photo13: Groundwater revealed withinTP05



Photo 14: TP05 arisings





Photo 15: TP06 after excavation



Photo 16: Track bed revealed within TP06





Photo 17: Arisings from TP06



Photo 18: Track bed revealed within TP07





Photo19: Arisings from TP07



Photo 20: Track bed revealed within WS08





Photo 21: TP08 arisings



Photo 22: Track bed revealed within TP09





Photo 23: Alternate view of track bed and ground profile within TP09



Photo 24: Groundwater seepage within TP09





Photo 25: TP09 arisings



Photo 26: Track bed revealed within TP10





Photo 27: TP10 arisings



Photo 28: View of the track bed revealed within TP11





Photo 29: Groundwater seepage within TP11



Photo 30: TP11 arisings





Photo 31: View of the track bed within TP12



Photo 32: General view of TP12





Photo33: Limestone boulder excavated from TP12



Photo 34: View of the arisings from TP12





Photo 35: View of the track bed material within TP13.



Photo 36: View of the arisings from TP13





Photo 37: View of the track bed within TP14



Photo 38: View of the track bed and made ground within TP14





Photo 39: View of the arisings from TP14



Photo 40: View of the track bed within TP15





Photo 41: Groundwater seepage within TP15



Photo 42: View of the arisings from TP15





Photo 43: Bridge investigation; Drilling of WS02 at southern extent of bridge





Photo 44: Drilling of WS06



Photo 45: Coring through bridge deck at location DPA





Photo 46: Underside of bridge arch adjacent to location DPA



Photo 47: Core through bridge deck at location DPA





Photo 48: Recovered sample from bridge deck arch at location DPA



Photo 49: Recovered sample from the sub-slab beneath the bridge at location DPA



Poole Park Miniature Railway – Borough of Poole Factual Report

### **APPENDIX D**

## **CAT Waste Output**

#### Classification Assessment Tool of Soil Wastes - Hazard Summary Sheet

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample Depth | Hazardous Waste Y/N | HP1 | HP2 | HP3 | HP4 | HP5 | HP6 | HP7 | HP8 | HP9 | HP10 | HP11 | HP12 | HP13 | HP14 | HP15 | HP16 |
|---------|--------------|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| TP01    | 0.23-0.42m   | N                   | No   | No   | No   | No   | No   | No   | No   |
| TP02    | 0.21-0.63m   | Y                   | No  | No  | No  | No  | No  | No  | Yes | No  | No  | No   | Yes  | No   | No   | No   | No   | No   |
| TP05    | 0.00-0.66m   | N                   | No   | No   | No   | No   | No   | No   | No   |
| TP07    | 0.08-0.32m   | N                   | No   | No   | No   | No   | No   | No   | No   |
| TP07    | 0.47-0.74m   | N                   | No   | No   | No   | No   | No   | No   | No   |
| TP09    | 0.00-0.39m   | N                   | No   | No   | No   | No   | No   | No   | No   |
| TP11    | 0.00-0.21m   | N                   | No   | No   | No   | No   | No   | No   | No   |
| TP13    | 0.00-0.64m   | N                   | No   | No   | No   | No   | No   | No   | No   |
| TP14    | 0.15-0.60m   | N                   | No   | No   | No   | No   | No   | No   | No   |

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample<br>Depth | Contaminant                 | Contaminant Concentration (%) | Hazardous<br>Waste Y/N | Hazard<br>Property | Individual Hazard<br>Statements Exceeded | Cumulative Hazard<br>Statements Exceeded | Additional Hazard Statements (see notes section) |
|---------|-----------------|-----------------------------|-------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| 38167   | 0m              | pН                          | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Benzene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38167   | 0m              | Toluene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38167   | 0m              | Naphthalenene               | 0.00001                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38167   | 0m              | Acenaphthylene              | 0.00008                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Acenaphthene                | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Fluorene                    | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Phenanthrene                | 0.00007                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Anthracene                  | 0.00009                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Fluoranthene                | 0.00027                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Pyrene                      | 0.00032                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Benzo(a)anthracene          | 0.00026                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Chrysene                    | 0.00027                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Benzo(b)fluoranthene        | 0.00052                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Benzo(k)fluoranthene        | 0.00016                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Benzo(a)pyrene              | 0.00040                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Indeno(1,2,3-cd)pyrene      | 0.00036                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Di-benz(a,h,)anthracene     | 0.00010                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Benzo(g,h,i)perylene        | 0.00039                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | hydrocarbon/oil with marker | 0.03630                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38167   | 0m              | Arsenic                     | 0.00183                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Chromium (Total)            | 0.00596                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Copper                      | 0.00580                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Lead                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Leadx                       | 0.00896                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Mercury                     | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Nickel                      | 0.00319                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Zinc                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38167   | 0m              | Zincx                       | 0.07136                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | pН                          | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Benzene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38169   | 0m              | Toluene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38169   | 0m              | Naphthalenene               | 0.00002                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38169   | 0m              | Acenaphthylene              | 0.00014                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Acenaphthene                | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Fluorene                    | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Phenanthrene                | 0.00024                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Anthracene                  | 0.00022                       | N                      |                    |                                          |                                          |                                                  |

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample<br>Depth | Contaminant                 | Contaminant Concentration (%) | Hazardous<br>Waste Y/N | Hazard<br>Property | Individual Hazard<br>Statements Exceeded | Cumulative Hazard<br>Statements Exceeded | Additional Hazard Statements (see notes section) |
|---------|-----------------|-----------------------------|-------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| 38169   | 0m              | Fluoranthene                | 0.00078                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Pyrene                      | 0.00079                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Benzo(a)anthracene          | 0.00049                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Chrysene                    | 0.00046                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Benzo(b)fluoranthene        | 0.00076                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Benzo(k)fluoranthene        | 0.00022                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Benzo(a)pyrene              | 0.00062                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Indeno(1,2,3-cd)pyrene      | 0.00044                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Di-benz(a,h,)anthracene     | 0.00019                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Benzo(g,h,i)perylene        | 0.00046                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | hydrocarbon/oil with marker | 0.10120                       | Υ                      | HP7, HP11          | H350, H340                               |                                          | H225 test                                        |
| 38169   | 0m              | Arsenic                     | 0.00272                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Chromium (Total)            | 0.00754                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Copper                      | 0.00462                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Lead                        | 0.00739                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Mercury                     | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Nickel                      | 0.00301                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Zinc                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38169   | 0m              | Zincx                       | 0.01738                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | pH                          | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Benzene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38171   | 0m              | Naphthalenene               | 0.00007                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38171   | 0m              | Acenaphthylene              | 0.00039                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Acenaphthene                | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Fluorene                    | 0.00007                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Phenanthrene                | 0.00030                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Anthracene                  | 0.00037                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Fluoranthene                | 0.00123                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Pyrene                      | 0.00131                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Benzo(a)anthracene          | 0.00083                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Chrysene                    | 0.00109                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Benzo(b)fluoranthene        | 0.00200                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Benzo(k)fluoranthene        | 0.00060                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Benzo(a)pyrene              | 0.00142                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Indeno(1,2,3-cd)pyrene      | 0.00135                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Di-benz(a,h,)anthracene     | 0.00047                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Benzo(g,h,i)perylene        | 0.00190                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | hydrocarbon/oil with marker | 0.02560                       | N                      |                    |                                          |                                          | H225 test                                        |

| A                  |                     |
|--------------------|---------------------|
| $\Lambda \cup \nu$ | <b>CatWasteSoil</b> |
|                    | Catyvaste           |

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample<br>Depth | Contaminant                 | Contaminant Concentration (%) | Hazardous<br>Waste Y/N | Hazard<br>Property | Individual Hazard<br>Statements Exceeded | Cumulative Hazard<br>Statements Exceeded | Additional Hazard Statements (see notes section) |
|---------|-----------------|-----------------------------|-------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| 38171   | 0m              | Arsenic                     | 0.00273                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Chromium (Total)            | 0.00567                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Copper                      | 0.03592                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Lead                        | 0.00928                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Mercury                     | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Nickel                      | 0.00496                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Zinc                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38171   | 0m              | Zincx                       | 0.03086                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | pН                          | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Naphthalenene               | 0.00001                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38173   | 0m              | Acenaphthylene              | 0.00007                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Fluorene                    | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Phenanthrene                | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Anthracene                  | 0.00005                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Fluoranthene                | 0.00013                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Pyrene                      | 0.00016                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Benzo(a)anthracene          | 0.00015                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Chrysene                    | 0.00015                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Benzo(b)fluoranthene        | 0.00035                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Benzo(k)fluoranthene        | 0.00010                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Benzo(a)pyrene              | 0.00025                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Indeno(1,2,3-cd)pyrene      | 0.00022                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Di-benz(a,h,)anthracene     | 0.00006                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Benzo(g,h,i)perylene        | 0.00021                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | hydrocarbon/oil with marker | 0.03840                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38173   | 0m              | Arsenic                     | 0.00164                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Chromium (Total)            | 0.00422                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Copper                      | 0.00269                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Lead                        | 0.00598                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Mercury                     | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Nickel                      | 0.00147                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Zinc                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38173   | 0m              | Zincx                       | 0.00568                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | pН                          | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Benzene                     | 0.00003                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38174   | 0m              | Naphthalenene               | 0.00005                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38174   | 0m              | Acenaphthene                | 0.00007                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Fluorene                    | 0.00006                       | N                      |                    |                                          |                                          |                                                  |

| A                       |       |            |
|-------------------------|-------|------------|
| $\Lambda \cup \nu \cup$ | CatlA | act a Cail |
| <b>ATKI</b>             | LdLVV | 92 FE JOH  |

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample<br>Depth | Contaminant                 | Contaminant Concentration (%) | Hazardous<br>Waste Y/N | Hazard<br>Property | Individual Hazard<br>Statements Exceeded | Cumulative Hazard<br>Statements Exceeded | Additional Hazard Statements (see notes section) |
|---------|-----------------|-----------------------------|-------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| 38174   | 0m              | Phenanthrene                | 0.00009                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Anthracene                  | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Fluoranthene                | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Pyrene                      | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Benzo(a)anthracene          | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Chrysene                    | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Benzo(b)fluoranthene        | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Benzo(k)fluoranthene        | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Benzo(a)pyrene              | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Indeno(1,2,3-cd)pyrene      | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Di-benz(a,h,)anthracene     | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Benzo(g,h,i)perylene        | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | hydrocarbon/oil with marker | 0.01140                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38174   | 0m              | Arsenic                     | 0.00330                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Chromium (Total)            | 0.00586                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Copper                      | 0.00251                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Lead                        | 0.00791                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Mercury                     | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Nickel                      | 0.00246                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Zinc                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38174   | 0m              | Zincx                       | 0.00704                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | pН                          | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Benzene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38176   | 0m              | Toluene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38176   | 0m              | Naphthalenene               | 0.00001                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38176   | 0m              | Acenaphthylene              | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Fluorene                    | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Phenanthrene                | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Anthracene                  | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Fluoranthene                | 0.00012                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Pyrene                      | 0.00011                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Benzo(a)anthracene          | 0.00011                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Chrysene                    | 0.00010                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Benzo(b)fluoranthene        | 0.00017                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Benzo(k)fluoranthene        | 0.00007                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Benzo(a)pyrene              | 0.00013                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Indeno(1,2,3-cd)pyrene      | 0.00009                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m              | Di-benz(a,h,)anthracene     | 0.00003                       | N                      |                    |                                          |                                          |                                                  |

| A                       |     |       |            |
|-------------------------|-----|-------|------------|
| $\Lambda \cup \nu \cup$ |     | CatlA | act a Cail |
|                         | IVO | LdLVV | asteSoil   |

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample<br>Depth       | Contaminant                  | Contaminant Concentration (%) | Hazardous<br>Waste Y/N | Hazard<br>Property | Individual Hazard<br>Statements Exceeded | Cumulative Hazard<br>Statements Exceeded | Additional Hazard Statements (see notes section) |
|---------|-----------------------|------------------------------|-------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| 38176   | 0m                    | Benzo(g,h,i)perylene 0.00009 |                               | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Arsenic                      | 0.00151                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Chromium (Total)             | 0.00206                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Copper                       | 0.01964                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Lead                         | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Leadx                        | 0.01440                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Mercury                      | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Nickel                       | 0.00167                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Zinc                         | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38176   | 0m                    | Zincx                        | 0.00706                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | pН                           | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Benzene                      | 0.00003                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38178   | 0m                    | Toluene                      | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38178   | 0m                    | Naphthalenene                | 0.00002                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38178   | 0m                    | Acenaphthylene               | 0.00008                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Acenaphthene                 | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Fluorene                     | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Phenanthrene                 | 0.00007                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Anthracene                   | 0.00006                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | 0m Fluoranthene              |                               | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m Pyrene             |                              | 0.00018                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m Benzo(a)anthracene |                              | 0.00015                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m Chrysene (         |                              | 0.00015                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Benzo(b)fluoranthene         | 0.00027                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Benzo(k)fluoranthene         | 0.00011                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Benzo(a)pyrene               | 0.00020                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Indeno(1,2,3-cd)pyrene       | 0.00015                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Di-benz(a,h,)anthracene      | 0.00004                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Benzo(g,h,i)perylene         | 0.00014                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | hydrocarbon/oil with marker  | 0.04100                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38178   | 0m                    | Arsenic                      | 0.00250                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Chromium (Total)             | 0.00313                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Copper                       | 0.01693                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Lead                         | 0.00608                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Mercury                      | 0.00002                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Nickel                       | 0.00319                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Zinc                         | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38178   | 0m                    | Zincx                        | 0.05506                       | N                      |                    |                                          |                                          |                                                  |

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample<br>Depth     | Contaminant                 | Contaminant Concentration (%) | Hazardous<br>Waste Y/N | Hazard<br>Property | Individual Hazard<br>Statements Exceeded | Cumulative Hazard<br>Statements Exceeded | Additional Hazard Statements (see notes section) |
|---------|---------------------|-----------------------------|-------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| 38180   | 0m                  | pН                          | 0.00000                       | N                      |                    |                                          |                                          | (222-222-22)                                     |
| 38180   | 0m                  | Benzene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38180   | 0m                  | Naphthalenene               | 0.00007                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38180   | 0m                  | Acenaphthylene              | 0.00005                       | N                      |                    |                                          |                                          | 1.25 (66)                                        |
| 38180   | 0m                  | Acenaphthene                | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Fluorene                    | 0.00001                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Phenanthrene                | 0.00008                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Anthracene                  | 0.00005                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Fluoranthene                | 0.00024                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Pyrene                      | 0.00022                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Benzo(a)anthracene          | 0.00019                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Chrysene                    | 0.00017                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Benzo(b)fluoranthene        | 0.00030                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Benzo(k)fluoranthene        | 0.00009                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Benzo(a)pyrene              | 0.00003                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Indeno(1,2,3-cd)pyrene      | 0.00021                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Di-benz(a,h,)anthracene     | 0.00015                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Benzo(g,h,i)perylene        | 0.00016                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | hydrocarbon/oil with marker | 0.04230                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38180   | 0m                  | Arsenic                     | 0.00184                       | N                      |                    |                                          |                                          | TIEEG (GGC                                       |
| 38180   | 0m Chromium (Total) |                             | 0.00228                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | Om Copper           |                             | 0.03039                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Lead                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Leadx                       | 0.02040                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Mercury                     | 0.00007                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Nickel                      | 0.00269                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Zinc                        | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38180   | 0m                  | Zincx                       | 0.02351                       | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m                  | pH                          | 0.00000                       | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m                  | Benzene                     | 0.00001                       | N                      |                    |                                          |                                          | H225 test                                        |
| 38182   | 0m                  | Naphthalenene               | 0.00006                       | N                      |                    |                                          |                                          | H228 test                                        |
| 38182   | 0m                  | Acenaphthylene              | 0.00005                       | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m                  | Acenaphthene                | 0.00001                       | N                      |                    |                                          |                                          | †                                                |
| 38182   | 0m                  | Fluorene                    | 0.00001                       | N                      |                    |                                          |                                          | †                                                |
| 38182   | 0m                  | Phenanthrene                | 0.00022                       | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m                  | Anthracene                  | 0.00008                       | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m                  | Fluoranthene                | 0.00047                       | N                      |                    |                                          |                                          | †                                                |
| 38182   | 0m                  | Pyrene                      | 0.00047                       | N                      |                    |                                          |                                          | †                                                |

# TKINS CatWasteSoil Classification Assessment Tool of Soil Wastes - Individual Compound Information

| Site Name    | Poole Park Minature Railway    |
|--------------|--------------------------------|
| Location     | Poole Park Minature Railway    |
| Site ID      |                                |
| Job Number   | 18-09563                       |
| Date         | 11/9/2018                      |
| User Name    | edward.davies@acstesting.co.uk |
| Company Name | ACS Testing Ltd                |

| Hole ID | Sample<br>Depth | Contaminant                 | Contaminant<br>Concentration (%) | Hazardous<br>Waste Y/N | Hazard<br>Property | Individual Hazard<br>Statements Exceeded | Cumulative Hazard<br>Statements Exceeded | Additional Hazard Statements (see notes section) |
|---------|-----------------|-----------------------------|----------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| 38182   | 0m              | Benzo(a)anthracene          | 0.00028                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Chrysene                    | 0.00031                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Benzo(b)fluoranthene        | 0.00048                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Benzo(k)fluoranthene        | 0.00022                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Benzo(a)pyrene              | 0.00033                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Indeno(1,2,3-cd)pyrene      | 0.00030                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Di-benz(a,h,)anthracene     | 0.00010                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Benzo(g,h,i)perylene        | 0.00029                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | hydrocarbon/oil with marker | 0.01520                          | N                      |                    |                                          |                                          | H225 test                                        |
| 38182   | 0m              | Arsenic                     | 0.00249                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Chromium (Total)            | 0.00681                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Copper                      | 0.05853                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Lead                        | 0.00000                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Leadx                       | 0.01930                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Mercury                     | 0.00002                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Nickel                      | 0.00751                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Zinc                        | 0.00000                          | N                      |                    |                                          |                                          |                                                  |
| 38182   | 0m              | Zincx                       | 0.01820                          | N                      |                    |                                          |                                          |                                                  |





#### Notes - Additional Information on Hazard Properties

|                    |                                       | 11010                                                        | s - Additional information on mazard Properties                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|---------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hazardous Property | Description                           | Hazard Statement                                             | Note                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HP1                | Explosive                             | H200, H201, H202,<br>H203, H204, H240 and<br>H241            | A waste is assessed for HP1 via test methods, rather than a concentration limit. If you have substances or a mixture containing explosive properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.                                                                                                                                                             |
| HP2                | Oxidising                             | H270, H271, H272                                             | A waste is assessed for HP2 via test methods, rather than a concentration limit. If you have substances or a mixture containing oxidising properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.                                                                                                                                                             |
| HP3                | Flammable                             | H220 to H226, H228,<br>H242, H250, H251m<br>H252, H260, H261 | A waste is assessed for HP3 via test methods, rather than a concentration limit. If you have substances or a mixture containing flammable properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.  If a waste contains either H220, H221, H260 or H261 a calculation can be performed to identify the minimum amount of that substance that will trigger HP3. |
| HP5                | Specific Target Organ Toxicity (STOT) | H304                                                         | Should a waste contain two or more compounds displaying H304 (Asp. Tox 1) and equal or exceed its specific concentration limit of 10%, then a waste will be hazardous by HP5 if its kinematic viscosity exceeds 20.5 mm²/s. Guidance should be sought from the CLP Criteria.                                                                                                                                                                   |
| HP9                | Infectious                            | N/A                                                          | A waste is assessed for HP9 via further testing, rather than a concentration limit. In cases where there is the potential for toxins to be present, further testing will be required. For healthcare waste reference should be made to the Department of health guidance: Safe management of healthcare waste.                                                                                                                                 |
| HP12               | Release of acute toxic gas            | EUH029, EUH031,<br>EUH032, H260 or H261                      | A waste is assessed for HP12 via test methods, rather than a concentration limit. If you have substances or a mixture that may release acute toxic gas the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.                                                                                                                                                           |
| HP15               | Explosive or explosive properties     | H205, EUH001,<br>EUH019 or EUH044                            | A waste is assessed for HP15 via test methods, rather than a concentration limit. If you have substances or a mixture that may exhibit explosive or explosive properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.                                                                                                                                         |
| HP16               | Persistent organic pollutants         | N/A                                                          | A waste is considered hazardous if the concentration of one or more compound (persistent organic pollutant) as listed in Appendix C of Environment Agency guidance WM3 is above its assigned concentration limit. For reference for dioxins and furans, this assessment incorporates the use of specific toxicity equivalent factors.                                                                                                          |