soitechnics environmental and geotechnical consultants

Proposed Wickes store Orchard Way Torquay

Ground Investigation Report

Cedar Barn, White Lodge, Walgrave, Northamptonshire NN6 9PYt: 01604 781877e: mail@soiltechnics.netf: 01604 781007w: www.soiltechnics.net

Proposed Wickes store development off Orchard Way Torquay TQ2 7FF

GROUND INVESTIGATION REPORT

	Tel: (01604) 781877 Fax: (01604) 78	81007 E-mail: mail@soiltechnics.net
Report or	iginators	
Prepared by	PNA	
	Darryl Neylon B.Sc (Hons) FGS AMIEnvSc	darryl.neylon@soiltechnics.net
	Dait yi Neylon B.Sc (Hons) FGS Alvitenvsc	Geo-environmental Engineer, Soiltechnics Limited
Supervised by	KeBoothly.	
		karen.boothby@soiltechnics.net
	Karen Boothby B.Sc,(Hons) (Open), MIEnvSc.	Senior Geo-environmental Engineer, Soiltechnics Limited
Supervised by		<u> </u>
		seb.crolla@soiltechnics.net
	Seb Crolla B.Sc, (Hons), MIEnvSc., FGS.	Associate Director, Soiltechnics Limited
Reviewed oy	Mh	
	Dr Matthew Hooper	matt.hooper@soiltechnics.net
	B.Sc. (Hons)., M.Sc., Ph.D., MIEnvSc., F.G.S.	Director, Soiltechnics Limited

soiltechnics environmental and geotechnical consultants

Aerial photograph of site

Report status and format

Report	Principal coverage	Report status	
section		Revision	Comments
1	Executive summary		
2	Introduction		
3	Desk study information and site observations		
4	Fieldwork		
5	Laboratory testing		
6	Ground conditions encountered		
7	Engineering assessment		
8	Chemical contamination		
9	Gaseous contamination		
10	Effects of ground conditions on building materials		
11	Classification of waste soils under the Waste Acceptance		
	Criteria		
12	Further investigations		
13	Remediation statement		
14	Drawings		

List of drawings

Drawing	Principal coverage	Status	
		Revision	Comments
01	Site location plan		
02	Plan showing existing site features and location of exploratory holes		
03	Plan showing site development proposals and location of exploratory points		
04	Plan showing existing site features, development proposals ground conditions encountered and potential construction risks associated with platform construction		
05	Section showing construction of standpipes installed in boreholes BH01 and BH02		

soiltechnics environmental and geotechnical consultants

List of appendices

Appendix	Content
А	Definitions of geotechnical terms used in this report
В	Definitions of geo-environmental terms used in this report
С	Investigation data sheets
D	Trial pit records
E	Borehole records (rotary drilling)
F	Copies of laboratory test result certificates – classification testing
G	Copies of laboratory test result certificates – concentrations of chemical contaminants
Н	Analysis and summary of test data in relation to concentrations of chemical contaminants
I	Conceptual models for chemical contamination
J	Record of in-situ gas monitoring results
K	Landfill waste acceptance criteria – primary classification
L	Landfill waste acceptance criteria – secondary classification
Μ	Landfill waste acceptance criteria – basic categorisation schedules
Ν	Copies of statutory undertakers' replies
0	Copy of correspondence received from the Local Authority Building Control and/or Environmental Health Officers
Р	Copy of desk study information produced by Envirocheck

1 Executive summary

1.1 General

1.1.1 We recommend the following executive summary is not read in isolation to the main report which follows.

1.2 Site description, history and development proposals

- 1.2.1 The site is located on the southern flank of a narrow bottom valley carrying a tributary of the Allen Brook the channel of which is located some 50m north-east of the site. The site is located in a predominantly commercial area towards the north western outskirts of Torquay, topography slopes down 5-10° from the south-west to the northwest of the site with a drop-in level of approximately 10m across the site.
- 1.2.2 A review of historical Ordnance survey maps indicates the site has remained undeveloped prior to our site investigation.
- 1.2.3 We understand the scheme will comprise the construction of a commercial warehouse unit with a footprint of approximately 50m by 35m across the ground floor. The program includes associated hardstanding, car parking and access roads and a mezzanine floor within the warehouse unit.
- 1.2.4 The scheme will require significant cut and fill earthworks prior to construction to create a level building platform. It is understood that cut in the order of 5m is required in the western area of the site and fill of 3m is required in the eastern area.

1.3 Ground conditions encountered

- 1.3.1 The exploratory excavations encountered a profile of soils considered to be either Watcombe Breccia Formation or Made Ground / Alluvium overlying the Watcombe Breccia Formation.
- 1.3.2 Groundwater seepages were encountered in trial pits within the Alluvium and Watcombe Breccia Formation at depths in the range of 1.4m to 2.4m below ground level.
- 1.3.3 Groundwater was measured on one return visit to site in two locations at approximately 0.7m below ground level.

1.4 Foundation solution

1.4.1 The variation in strength/density characteristics of the Watcombe Breccia Formation soils, the high water table, and thickness of the Made Ground following cut and fill will make trench type foundations unsuitable for carrying building loads. It is understood that a piled foundation will be adopted.

1.4.2 Groundwater will require careful consideration and further investigations are recommended to determine the risk of groundwater adversely affecting the construction phase.

1.5 Chemical and gaseous contamination

- 1.5.1 Ground conditions at the site pose a low risk if harm to human and environmental receptors.
- 1.5.2 Measures to protect against ground gases (methane, carbon dioxide and radon) are not required for new buildings at the site.

1.6 Landfill classification

- 1.6.1 Classification of soils under the Waste Acceptance Criteria indicates the general Made Ground soils are suitable for disposal as inert waste.
- 1.6.2 Naturally deposited Alluvium and Watcombe Breccia Formation are suitable for disposal as inert waste.

2 Introduction

2.1	Objectives
2.2	Client instructions and confidentiality
2.3	Site location and scheme proposals
2.4	Report format and investigation standards
2.5	Status of this report
2.6	Report distribution

2.1 Objectives

- 2.1.1 This report describes a ground investigation carried out for a proposed Wickes Store at Orchard Way, Torquay TQ2 7FF.
- 2.1.2 The objective of the ground investigation was to establish ground conditions at the site, sufficient to identify possible foundation solutions for the development and provide parameters necessary for the design and construction of foundations.
- 2.1.3 The investigation included an evaluation of potential chemical and gaseous contamination of the site leading to the production of a risk assessment in relation to contamination.
- 2.1.4 Our brief also included investigations and testing to allow classification of soils at the site to be disposed of to landfill.
- 2.1.5 Our brief included testing to determine the moisture content to dry density relationship for proposed cut and fill operations across the site.
- 2.1.6 The investigation has also been produced to support a planning application for the site by satisfying National Planning Policies Framework sections 120 and 121 or if the project has the benefit of a planning permission, potentially discharge conditions which relate to ground conditions.

2.2 Client instructions and confidentiality

- 2.2.1 The investigation was carried out in January 2018 and reported in February 2018 acting on instructions received from our client, Travis Perkins.
- 2.2.2 This report has been prepared for the sole benefit of our above named instructing client, but this report, and its contents, remains the property of Soiltechnics Limited until payment in full of our invoices in connection with production of this report.
- 2.2.3 Our original investigation proposals were outlined in our e-mail correspondence to Travis Perkins of 29th September 2018. The investigation was subsequently amended on site to account for actual ground conditions encountered. Difficult ground conditions and restricted accessibility meant that only two of the proposed four boreholes could be completed during the investigation.

2.3 Site location and scheme proposals

- 2.3.1 The National Grid reference for the site is 288840, 66300. A plan showing the location of the site is presented on Drawing 02.
- 2.3.2 We understand the scheme will comprise the construction of commercial warehouse unit with a footprint of approximately 52m by 35m across the ground floor together with associated hardstanding, car parking and access roads. Proposals also include a mezzanine floor within the warehouse unit.
- 2.3.3 We understand the development will require significant earthworks to create a level building platform, it is proposed to use cut from the southern extents of the site and place the arisings as engineered fill to the north of the site. The estimated volume of cut and fill is in the region of 6200m³, proposed cut levels of up to 4m and fill levels of up to 3m.
- 2.3.3 We have received layout drawings of the proposed scheme with the layout presented on Drawing 03.

2.4 Report format and investigation standards

- 2.4.1 Sections 2 to 6 of this report describe the factual aspects of the investigation with Section 7 presenting an engineering assessment of the investigatory data. Section 8 provides a risk assessment of chemical contamination based on readily available historic records, inspection of the soils and laboratory testing. Section 9 provides a similar risk assessment in relation to gaseous contamination with Section 10, a risk assessment relating to construction materials likely to be in contact with the ground. Section 11 provides a classification of waste soils for off-site disposal under the waste acceptance criteria.
- 2.4.2 This investigation integrates both contamination and geotechnical aspects. The investigation was carried out generally, and where practical following the recommendations of BS EN 1997:2 2007 *'Eurocode 7 Geotechnical Design Part 2: Ground Investigation and Testing'*. Sections 2 to 6 form a Ground Investigation Report as set out in BS EN 1997:2 2007 *'Eurocode 7 Geotechnical Design Part 2: Ground Investigation and Testing'*.
- 2.4.3 The investigation process also followed the principles of BS10175: 2011 'Investigation of potentially Contaminated Sites – Code of Practice'. In view of the client's requirement for rapid implementation of the investigation, the following elements, defined in BS10175, have been completed and incorporated in this report.
 - a) Phase I Preliminary investigation (desk study and site reconnaissance)
 b) Phase II Exploratory and main (intrusive) investigations

2.4.4 The extent and result of the preliminary investigation (desk study) is reported in Section 3. Fieldwork combined the exploratory investigation and main investigation stages into one phase with the extent of these works described in Sections 4 and 6 of this report. Any supplementary investigations deemed necessary are identified in Section 12. Section 13 provides information on any remedial strategy and specification if required.

2.5 Status of this report

- 2.5.1 This report is final based on our current instructions.
- 2.5.2 This investigation has been carried out and reported based on our understanding of best practice. Improved practices, technology, new information and changes in legislation may necessitate an alteration to the report in whole or part after publication. Hence, should the development commence after expiry of one year from the publication date of this report then we would recommend the report be referred back to Soiltechnics for reassessment. Equally, if the nature of the development changes, Soiltechnics should be advised and a reassessment carried out if considered appropriate.

2.6 Report distribution

2.6.1 This report has been prepared to assist in the design and planning process of the development and normally will require distribution to the following parties, although this list may not be exhaustive:

Table summarising parties likely to require information contained in this report			
Party	Reason		
Client	For information / reference and cost planning		
Developer / Contractor / project manager	To ensure procedures are implemented, programmed and costed		
Planning department	Potentially to discharge planning conditions		
Environment Agency	If ground controlled waters are affected and obtain approvals to any remediation strategies		
Independent inspectors such as Building Control	To ensure procedures are implemented and compliance with building regulations		
Project design team	To progress the design		
Principal Designer (PD)	To advise in construction risk identification and management under the Construction (design and management) regulations		
Waste recycling operators (if appropriate)	For recycling or reducing hazardous properties (if and where appropriate)		
Table 2.6			

3

Desk study information and site observations

- 3.1 General
- 3.2 Description of the site
- 3.3 Injurious and invasive weeds and asbestos
- 3.4 History of the site
- 3.5 Geology and geohydrology of the area
- 3.6 Landfill and infilled ground
- 3.7 Radon
- 3.8 Flood risk
- 3.9 Enquiries with statutory undertakers
- 3.10 Enquiries with Local Authority Building Control and Environmental Health Officers
- 3.11 Unexploded Ordnance (UXO) Risk

3.1 General

- 3.1.1 We have carried out a desk study which was limited to a review of readily available information including:
 - a) Review of published Ordnance Survey maps dating back to 1889 at various published scales
 - b) Inspection of geological maps produced by the British Geological Survey together with relevant geological memoirs
 - c) Consultation with Statutory Undertakers
 - d) Site reconnaissance
 - e) Other relevant published documents
- 3.1.2 We have obtained old Ordnance Survey maps using the Envirocheck database system. In addition to retrieval of historical and current Ordnance Survey data, Envirocheck provide information compiled from outside agencies including: -
 - Ordnance Survey
 - Environment Agency
 - Scottish Environment Protection Agency
 - The Coal Authority
 - British Geological Survey
- Centre for Ecology and Hydrology
- Countryside Council for Wales
- Scottish Natural Heritage
- Natural England
- Health Protection Agency
- 3.1.3 The study did not extend to research of meteorological information or consultation with other interested parties such as English Heritage (ancient monuments), Ordnance Survey (survey control points), Planning Authorities or Archaeological Units.

- 3.1.4 A copy of records produced by Envirocheck is presented in Appendix P. Envirocheck produce a wealth of factual database information. Although we can provide a discussion on each of the database topics, this would produce a very lengthy document, but some of these discussions would not be relevant to the aims of this report. As a consequence we have extracted some of the relevant topics and discussed them in this section of the report.
- 3.1.5 The data presented in the following report sections has primarily been extracted from the Envirocheck report.

3.2 Description of the site

- 3.2.1 The site is located on the southern flank of a narrow valley carrying a tributary of Allen Brook, the channel of which is located some 50m to the north-east of the site. The site is located in a predominantly commercial area at the north-western outskirts of Torquay. Topography at the site slopes down 5-10° from the south-west to the northeast with a fall in level of approximately 10m across the site.
- 3.2.2 At the time of our investigation the site comprised of an area of open field within a larger parcel of land to the south of Riviera Way and east of Hamelin Way. The site is bound to the east by a commercial car dealers and to the south by Orchard Way with commercial developments beyond. Site boundaries are defined by a mix of timber fencing, trees and marshes associated with the Allen Brook tributary.
- 3.2.3 Trees up to 4m were observed along the northern and eastern site boundaries of the larger parcel, tree surgeons were on site at the same time of our investigation and it is understood they had removed several trees in the northern area of the site.
- 3.2.4 A plan showing observed site features and location of exploratory points is presented on Drawing 02. The following photographs indicate the condition of the site at the time of our investigation.

soiltechnics environmental and geotechnical consultants

Photograph 1

The north-eastern boundary of the site looking east

Photograph 2

The central area of the site looking south-east

Photograph 3

The central area of the site looking south-west

3.3 Injurious and invasive weeds and asbestos

- 3.3.1 Injurious and invasive weeds
- 3.3.1.1 The following weeds are controlled under the Weeds Act 1959:
 - Common Ragwort
 - Spear Thistle
 - Creeping or Field Thistle
 - Broad leaved Dock
 - Curled Dock
- 3.3.1.2 Whilst it is not an offence to have the above weeds growing on your land, you must:
 - Stop them spreading to agricultural land, particularly grazing areas or land used for forage, like silage and hay
 - Choose the most appropriate control method for the your site
 - Not plant them in the wild

Should you allow the spread of these weeds to another parties land, Natural England could serve you with an Enforcement Notice. You can also be prosecuted if you allow animals to suffer by eating these weeds.

- 3.3.1.3 In addition to the above, you must not plant in the wild or cause certain invasive and non-native plants to grow in the wild as outlined in the Wildlife and Countryside act 1981. It is an offence under section 14(2) of the act to *'plant or otherwise cause to grow in the wild'* any plants listed in schedule 9, part II. This can include moving contaminated soil or plant cuttings. The offence carries a fine or custodial sentence of up to 2 years. The most commonly found invasive, non-native plants include:
 - Japanese knotweed
 - Giant hogweed
 - Himalayan balsam
 - Rhododendron ponticum
 - New Zealand pigmyweed

You are not legally obliged to remove these plants or to control them. However, if you allow Japanese knotweed to spread to another parties land, you could be prosecuted for causing a private nuisance.

- 3.3.1.4 The presence of such weeds on site may have considerable effects on the cost / timescale in developing the site. Japanese knotweed can cause significant damage to buildings, roads and pavements following development, if untreated prior to development.
- 3.3.1.5 Our investigations exclude surveys to identify the presence of injurious and invasive weeds. It should be noted that the tree surgeons present on site positively identified Japanese Knotweed amongst some trees adjacent to the south of the site in addition to the southern boundary of the larger parcel of land. We recommend specialists in the identification and procedures to deal with injurious and invasive weeds are appointed prior to commencement of any works on site or if appropriate purchase of the site.

3.3.2 Asbestos

3.3.2.1 Our investigations exclude surveys to identify the presence or indeed absence of asbestos on site. It should be noted however, that where intrusive investigations were undertaken we did not observe any obvious evidence of potential asbestos containing materials. This information does not constitute a site specific risk assessment and we recommend specialists in the identification and control / disposal of asbestos are appointed prior to commencement of any works on site or, if appropriate, purchase of the site.

3.4 History of the site

3.4.1 An attempt to trace the history of the site has been carried out by obtaining copies of old Ordnance Survey maps provided by Envirocheck. The recent history of the site based on published Ordnance Survey maps is summarised in the following table:

Date	Onsite	Offsite
1889-1906	Site is recorded as open field, a field boundary runs through the centre of the site from south to north.	The site is bound to the south and west by orchards. A brook is recorded 25m north of the site. A railway track is recorded some 50m north of the site, parallel with the north-eastern site boundary. An 'old quarry' is recorded some 200m south-east of the site.
1906-1954	No significant change.	Manor House recorded some 50m south o the site. Old quarry no longer recorded. Kingskerswell Reservoir recorded some 900m north of the site.
1964-1976	Field boundary no longer recorded.	Substation is recorded some 100m east of the site. Significant residential encroachment some 150m south-east of the site.
1991	No significant change.	Manor House recorded as 'Higher Court Farm'. Significant development of the roa infrastructures of Riviera Way and Hamelin Way, including an embankment associated with Hamelin Way. Coniferous trees replaced orchard to the south of the site.
1993-2006	As above.	No significant change
2017	As above	Orchard way recorded adjacent to the southern boundary of the site with commercial developments recorded south of Orchard Way.

3.5 Geology and geohydrology of the area

3.5.1 Geology of the area

3.5.1.1 Envirocheck reproduce geological map extracts taken from the British Geological Survey (BGS) digital geological map of Great Britain at 1:50,000 scale (ref Appendix P). A summary of the recorded geological information for the site is presented in the following table:

Strata	Bedrock or	Approximate	Typical soil	Likely	Aquifer
	superficial	thickness	type	permeability	designation
Alluvium	Superficial	4-8m	Clay, Silt,	Permeable	Secondary A
(North-east			Sand and		Aquifer (r)
half of site)			Gravel		
Watcombe	Bedrock	25m	Breccia and	Permeable	Secondary A
Breccia			sandstone		Aquifer (r)
Formation			interbedded		
Torbay	Bedrock	25m	Sandstone	Permeable	Secondary A
Breccia			interbedded		Aquifer (a)
Formation			with breccia		
Table 3.5.1					

(r) recorded aquifer designation(a) assumed aquifer designation

- 3.5.1.2 Superficial deposits are the youngest geological deposits formed during the Quaternary, which extends back about 2.6 million years. They rest on older deposits or rocks referred to as bedrock. Soil types and assessments of permeability are based on geological memoirs, in combination with our experience of investigations in these soil types.
- 3.5.1.4 Secondary A aquifers are predominantly permeable layers capable of supporting water supplies at a local rather than strategic scale. In some cases, Secondary A aquifers can form an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

3.5.2 Water abstractions

- 3.5.2.1 Envirocheck reports two active groundwater abstractions and one surface water abstraction within 1km of the site. The closest groundwater abstraction lies 166m north-west of the site with usage recorded as Agricultural Spay Irrigation. The closest surface water abstraction lies 135m north of the site with usage also recorded as Agricultural Spay Irrigation.
- 3.5.2.2 The site is not located within a zone protecting a potable water supply abstracting from a principal aquifer (i.e. a source protection zone).

3.5.3 Coal mining and brine extraction

3.5.3.1 The site is not recorded to be within an area affected by past or present coal mining, or minerals worked in association with coal or brine extraction (within the Cheshire Brine Compensation District).

3.5.4 Shallow mining and natural subsidence hazards

3.5.4.1 The British Geological Survey present hazard ratings for shallow mining and natural subsidence hazards. The site has the following ratings;

Hazard	Rating
Mining hazard in non-coal mining areas	Rare
Potential for collapsible ground stability hazard	Very low
Potential for compressible ground stability hazard	Moderate
Potential for ground dissolution stability hazard	No hazard
Potential for landslide ground stability hazard	Low
Potential for running sand ground stability hazard	Low
Potential for shrinking or swelling clay ground stability hazard	Very low
Table 3.5.4	

- 3.5.4.2 Envirocheck records a moderate potential for compressible ground stability at the site. The geological map of the area records the site is underlain by Alluvium deposits, which are likely to represent the elevated hazard rating. We did not encounter what we would consider Alluvium deposits during our investigation.
- 3.5.4.3 In addition to the above hazard ratings, a report completed by Ove Arup and Partners in December 1991, commissioned by the Department of the Environment (DoE) indicates where mining should be borne in mind when considered planning and development of land. The site is not recorded as lying in an area of conclusive rock mining as indicated by the report.

3.5.5 Borehole records

3.5.5.1 The British Geological Survey (BGS) retain records of boreholes formed from ground investigations carried out on a nationwide basis. The location of boreholes with records held by the BGS is recorded on the borehole map contained in Appendix P. We do not normally obtain copies of these records but can do on further instructions. There is normally a charge made by the BGS for retrieving and copying these records.

3.6 Landfill and infilled ground

3.6.1 A number of registered/historic landfill sites are recorded in the area. The following table summarises these landfill sites:

Summary of Landfill sites					
Landfill name	Туре	Location	Waste authorised	Licence status	
Scotts Bridge	Historical and registered	67m N and 141m E	Inert and industrial waste Asbestos Sheet & Pipes	Closed	
Kerswell Gardens	Historical and registered	328m N	Not supplied	Site not yet started	
S R Lancaster	Historical and registered	635m NE	Inert waste	Cancelled	
Table 3.6.1	-				

- 3.6.2 Envirocheck records three areas of potentially infilled land (water) within 1km of the site. The closest of which is recorded 606m to the south-east of the site. No details regarding the use of the infilled land are provided.
- 3.6.3 In addition, Envirocheck record two BGS mineral sites within 1000m of site, the closest of which lies 236m south-east of site. Both mineral sites are recorded as opencast quarrying of the Watcombe and Torbay Breccia Formation.

3.7 Radon

- 3.7.1 Envirocheck use the British Geological Survey database to review reported radon levels in the area in which the site is located to establish recommended radon protection levels for new dwellings. The database records the site as being located where **no protection** is recommended.
- 3.7.2 The Building Research Establishment publication applies to all new buildings, conversions and refurbishments whether they be for domestic or non-domestic use. For non-domestic buildings, the guidance supplements the requirements for radon protection at work specified in the Ionising Radiations Regulations 1999, legislation made under the Health and Safety at Work Act administered by the Health and Safety Executive (HSE). Further information is contained in the HSE/BRE guide "Radon in the Workplace".
- 3.7.3 It is noteworthy that the BRE and BGS / HPA information is based on statistical analysis of measurements made in dwellings in combination with geological units, which are known to emit radon. Consequently, there is a risk for actual radon levels at the site to exceed the levels assessed by the BGS / HPA / BRE. Currently, the only true method of checking actual radon levels is by measurement within a building on the site over a period of several months. It should be noted that it is not currently a requirement of the Building Regulations to test new buildings for radon, however the BRE recommends testing on completion or occupation of all new buildings (domestic and non-domestic), extensions and conversions. Should you wish to undertake radon monitoring following completion of the development, we can provide proposals.

3.8 Flood risk

- 3.8.1 The north-eastern boundary of the site is located within a fluvial flood plain. The north-east and east of the site is also located within a high to low risk area of surface water flooding and in an area for potential groundwater flooding to occur at the surface.
- 3.8.2 It should be noted that this information does not constitute a site specific Flood Risk Assessment (FRA), and a full FRA may be required for the development to support a planning application or satisfy planning conditions.

3.9 Enquiries with statutory undertakers

- 3.9.1 We have contacted the following Statutory Undertakers (SUs) to obtain copies of their records in order to avoid damaging their apparatus during our fieldwork activities:
 - a) BT Openreach Ltd
 - b) National Grid Gas plc
 - c) South West Water
 - d) Western Power Distribution
 - e) Wales and West utilities
 - f) ES Pipelines

Copies of responses received prior to publication of this report are presented in Appendix N. These records have been obtained solely for the purposes described above. Some of these records have been obtained from the Internet and from our database without contacting the statutory undertaker direct. Occasionally, SU information is recorded on drawings larger than A3, and thus cannot be easily presented in this report. In such cases we will copy the correspondence but not incorporate the drawing in this report, and maintain the records on our office file.

- 3.9.2 In addition, we have visited the Linesearch web site (www.linesearch.org) which provides a report on national grid networks (National Gas and Electricity Transmission Networks). Again a copy of their report is presented in Appendix N.
- 3.9.3 Normally Statutory Undertakers drawings record the approximate location of their services. We recommend further on site investigations be undertaken to confirm the position of the apparatus and thus establish the effect on the proposed development and the necessity or otherwise for the permanent or temporary diversion of the service to allow the construction of the development to safely and successfully proceed.
- 3.9.4 It should be noted that a water supply line crosses the site. The shut off valve was located on site and switched off, the exposed service pipe capped on site.
- 3.9.5 It should be noted that statutory undertakers' records normally exclude private services.

3.10 Enquiries with local authority building control and environmental health officers

- 3.10.1 We have contacted Local Authority Building Control regarding their records relating to the site. At the time of issue, we are awaiting a response.
- 3.10.2 We have contacted Local Authority Environmental Health Officers regarding their records relating to the site. They have remarked that the site and surrounding area is not considered "contaminated land" as defined by part 2A of the EPA 1990, nor is any further action being considered under the same legislation. They are unaware of any remediation work being carried out in the vicinity, and from the information they hold, there are no landfills at or close to the site.

4 Fieldwork

4.1	General
4.2	Site restrictions
4.3	Exploratory trial pits
4.4	Rotary drilling
4.5	Measurement of landfill type gases in gas monitoring standpipes
4.6	Sampling strategies

4.1 General

- 4.1.1 Fieldwork was carried out between Wednesday 3rd and Friday the 5th of January 2018 and comprised the following activities:
 - Excavation of thirteen exploratory trial pits
 - Excavation of two exploratory boreholes formed using rotary borehole techniques
- 4.1.2 A plan of the site showing observed/existing site features, development proposals and the position of exploratory points is presented on Drawing 02. The positions of the exploratory points have been surveyed using dimensional surveys.
- 4.1.3 The extent of fieldwork activities and position of exploratory points were defined by Soiltechnics.
- 4.1.4 Exploratory points were positioned to avoid known locations of underground services, to avoid possible location of proposed foundations but were also positioned to provide a reasonable coverage of the site. Prior to commencement of exploratory excavations an electronic cable locating tool was used to scan the area of the excavation. If we received a response to this equipment then the excavations would be relocated.
- 4.1.5 All soils exposed in excavations were described in accordance with BS EN ISO 14688 *(Identification and Classification of soil'* and BS EN ISO 14689 *(Identification and classification of rock'.*

4.2 Site restrictions

4.2.1 At the time of our investigation, ground conditions at the site were unfavourable with heavy rainfall resulting in waterlogged ground reducing the accessibility for the tracked and four wheel drive rotary equipment. Two of the proposed four boreholes were completed, the exploratory excavations were located to provide the best coverage across the site.

4.3 Exploratory trial pits

- 4.3.4 Trial pits TP01 to TP13 were excavated to a maximum depth of 3.7m using a 13t 360° tracked excavator. The excavations were backfilled with excavated material compacted using the back of the excavator bucket. Whilst we attempted to reinstate the excavation to its original condition some short-term settlement of the backfilling materials may occur. Due to the waterlogged ground at the site, considerable surface damage was unavoidable during the tracking and reinstatement of the trial pits. A Geotechnical Engineer supervised the excavations.
- 4.3.5 Sampling and logging was carried out as trial pit excavations proceeded but were not entered at depths exceeding 1.2m, or where trial pit sides were deemed unstable. The density of granular soils encountered in excavations was gauged by the ease of excavation.
- 4.3.7 Soil samples for subsequent laboratory determination of concentration of chemical contaminants were taken from the sides of trial pits and stored in new plastic containers, which were labelled and sealed. Samples from below suitable access depths into trial pits were taken as a sub sample from soil contained in the excavator bucket. If as a consequence of visual or olfactory evidence, a sample was suspected to be contaminated by organic material, the sample was stored in an amber glass jar with a PTFE sealing washer.
- 4.3.9 Soil samples for subsequent 'physical and classification' laboratory testing were taken from the side of trial pits or from bulk samples taken from the excavator bucket. The sample was placed in a plastic bag and subsequently sealed and labelled. Samples for moisture content determination were placed in sealable tubs and appropriately labelled. Moisture content samples were taken to the laboratory for testing within 24 hours of sampling.
- 4.3.10 Soil samples were obtained to meet quality class 3 to 5 as described in BS EN 1997-2:2007. Sample sizes were appropriate for the laboratory test being considered.
- 4.3.14 A pocket penetrometer was/was also used in the cohesive soils encountered. This tool is deemed to measure the apparent ultimate bearing capacity of the soil under test. The pocket penetrometer is calibrated in kg/cm². The reading can be approximately converted to equivalent undrained shear strength by multiplying the results by a factor of 50. Tests were carried out in the sides of trial pits when access can be safety achieved otherwise testing was carried out on excavated intact clods. The results are reported in columns to the right of trial pit results. The pocket penetrometer is not covered by British Standards. This tool has the advantage that it can be used to determine the approximate insitu undrained shear strength of stony cohesive soils.
- 4.3.15 A summary of pocket penetrometer results obtained from the cohesive soils encountered in exploratory excavations are presented in graphical format on Drawing 04.
- 4.3.16 Trial pit records are presented in Appendix D.

4.4 Rotary drilling

4.4.1 Rotary open holing

4.4.1.1 Rotary boreholes BH01 and BH02 were initially formed by open hole drilling using a tricone (rock roller) bit to depths of 3m and 7m respectively. Open hole drilling involves blown air flushing drill cuttings to the surface. Only the rate of advance of the drill bit, the colour and texture of the cuttings brought to the surface gives any indication of the strata penetrated. Certainly no useable geotechnical parameters can be obtained using these methods.

4.4.2 Rotary core drilling

- 4.4.2.1 Rotary core drilling was carried out using a double tube core barrel fitted with a tungsten or diamond core bit. The double tube barrel consists of two concentric barrels. The outer is rotated by drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the drilling process. The core cut by the coring bit passes up into the inner barrel and at the end of the coring run the core barrel assembly is lifted to the surface. The core is prevented from dropping out of the core barrel by a catcher mechanism fitted in the lower part of the inner barrel.
- 4.4.2.2 Lubrication is provided to the coring bit via the annulus between the inner and outer barrels. The lubricant is normally compressed air but can be water or a mixture of both. The lubricant also aids transport of cutting bits to the surface.
- 4.4.2.3 Coring was carried out using a core barrel to produce a nominal 116mm diameter core.

4.4.3 Core preservation

4.4.3.1 The core samples are normally 1 to 1.5m long reflecting the core barrel length. Every effort was made to maintain the core in a good condition once extracted from the core barrel. The cores were placed in a specially made core box and labelled. The cores were generally preserved following the procedures detailed in BS EN ISO 22475-1:2006.

4.4.4 Logging

4.4.4.1 Core samples were logged in accordance with EN ISO 14689-1:2003 'Identification and classification of rock Part 1: Identification and description'. Rotary core records are presented in Appendix E.

4.4.5 Standpipes

- 4.4.1 Combined gas and groundwater monitoring standpipes were installed in boreholes BH01 and BH02. The standpipes were installed following the recommendations of BS EN ISO 22475-1:2006 'Geotechnical Investigation and Testing Sampling methods and groundwater measurements Part 1: Technical Principles for execution' and BS8576:2013 'Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOCs)'. Details of the standpipe installation are recorded on Drawing 05.
- 4.4.2 Water levels in the standpipes have been measured during a return visit to the site. The water level was measured using a measuring tape calibrated in 1mm intervals with an electronic end piece, which emits an alarm sound in contact with water. Water levels are measured from ground levels at the borehole position.

4.5 Measurement of landfill type gases in gas monitoring standpipes

- 4.5.1 The concentrations of landfill type gases collected within gas monitoring standpipes installed in boreholes BH01 and BH02 was measured using a portable infra-red gas analyser (model GA5000, manufactured by Geotechnical Instruments). Initially the gas analyser was connected to the gas valve on the top of the standpipe to allow the flow rate to be measured. Essentially this is a measurement of gas pressure produced in the standpipe, which is compared with atmospheric pressure at the time of measurement to produce an equivalent gas 'flow' in l/hr. The equipment used is capable of measuring to an accuracy of 0.1l/hr; below this the gas analyser records zero flow. Following BS8485:2015 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings (clause 6.3.4), we assume flows of 0.1l/hr when the gas analyser reads zero, thus producing a pessimistic gas flow rate in our assessment of ground gases.
- 4.5.2 Following measurement of 'flow' the gas analyser pumps gases contained in the standpipe through the analyser. Initial readings of gas concentrations are noted manually, followed by subsequent recordings at regular time periods until 'steady' state' concentrations are achieved. The analyser records 'peak' and 'steady' concentrations of the following gases:
 - Methane (CH₄)
 - Carbon dioxide (CO₂)
 - Oxygen (O₂)
- 4.5.3 The ambient atmospheric temperature and barometric pressure was also recorded at the site. To determine if the atmospheric pressure is rising or falling we interrogate the internet on a daily basis.
- 4.5.4 Methane in concentrations of between 5 to 15% in air is potentially explosive. The 5% methane concentration in air is defined as the Lower Explosive Limited (LEL). The gas analyser measures a percentage of the LEL. For example, 10% LEL equates to 10% of 5%, i.e. 0.5% methane concentration in air.

4.5.5 Records of gas monitoring data are presented in Appendix J.

4.6 Sampling strategies

4.6.1 Geotechnical

- 4.6.1.1 In general we adopted a judgemental sampling strategy in relation to geotechnical aspects of the investigation. The location and frequency of sampling was carried out in consideration of the following:
 - i) Topography
 - ii) Geology (including Made Ground)
 - iii) Nature of development proposals

4.6.2 Environmental

4.6.2.1 Details of sampling with respect to contamination issues are described in Section 8.

4.6.3 Sample retention

4.6.3.1 Samples are stored for a period of one month following issue of this report, unless otherwise requested.

5 Laboratory testing

5.1 Classification and physical testi	ng
---------------------------------------	----

5.2 Chemical testing

5.1 Classification and physical testing

5.1.1 Laboratory testing was carried out on samples retrieved from site. The method of testing is recorded on the laboratory test certificate. The following table summarises the classification and physical testing scheduled;

Table sum	marising clas	sification and phys	ical testing
Exploratory point	Depth (m)	Soil type	Testing scheduled
BH01	7.1 - 7.4	Watcombe Breccia	Uniaxial compression of strength testing of rock
BH01	8.25 – 8.5	Formation	cores
BH01	12.35 – 12.6	-	
BH01	13.8 - 14.05	-	
BH02	7.9 – 8.2	-	
BH02	10-10.3	-	
CS01		Made Ground	Dry density and moisture content relationship
CS02		-	using 2.5kg hammer
TP01	0.90	Watcombe Breccia Formation	Liquid limit/plasticity limit and plasticity index/ moisture content
ТР09	1.0	Alluvium	
TP12	0.8	Alluvium	
TP12	1.50	-	
TP01	1.80	Watcombe Breccia	Particle size distribution (by wet sieving)
TP07	1.20	Formation	
TP11	1.6 - 1.9	-	
TP12	1.80	-	
TP02	1.50	Made Ground	Moisture content
TP02	2.10	-	
TP02	2.60	Watcombe Breccia Formation	-
TP03	1.2	Made Ground	_
TP05	1.80	Watcombe Breccia Formation	-
ТР06	0.60	Made Ground	_
TP08	0.6	-	
TP08	1.2 - 1.5	Watcombe Breccia Formation	-
TP11	0.8	Made Ground	_
TP11	1.3	Watcombe Breccia Formation	_
TP13	0.3	Made Ground	
Table 5.1.1			

5.1.2 Laboratory test certificates are presented in Appendix F.

5.2 Chemical testing

5.2.1 Chemical testing was carried out based on ground conditions and with reference to the contamination Initial Conceptual Model as presented in Section 8. The test methods are recorded on the chemical test certificates. The following table summarises the chemical testing scheduled;

Exploratory point	Depth (m)	Medium/soil type	Testing scheduled (Refer to Appendix A for details).
TP02	0.2	Made Ground	SOIL Suite 1
TP04	0.2	Watcombe Breccia Formation	
TP06	0.2	Made Ground	
TP07	0.2		
TP09	0.2	-	
TP08	0.3	Made Ground	SOIL Suite 7
BH01	4.8	Watcombe	SOIL Suite 8
BH01	13.2	Breccia Formation	
TP04	1.5	-	
TP13	0.3	Made Ground	
TP04	3.4	Groundwater	WATER Suite 9
TP10	0.4	Alluvium	SOIL Suite 13
TP01	0.1	Watcombe Breccia Formation	Asbestos presence/absence
TP02	0.2	Made Ground	
TP05	0.2	-	
TP06	0.7	-	
TP07	0.5	•	
Table 5.2.1			

5.2.2

Laboratory test certificates for chemical testing are presented in Appendix G.

6 Ground conditions encountered

6.1	Soils and rocks
6.2	Topsoil
6.3	Groundwater
6.4	Evidence of contamination
6.5	Obstructions and instability
6.6	Existing foundation arrangements

6.1 Soils and rocks

6.1.1 Each exploratory excavation encountered a similar profile of soils considered to be Made Ground overlying Watcombe Breccia Formation deposits, it should be noted that not all exploratory excavations encountered Made Ground.

6.1.2 Made Ground

6.1.2.1 Made Ground was encountered in TP02, TP03, TP05 to TP09, TP11 and TP13 to depths in the range of 0.6m to 2.2m (37.2mAOD to 45.5mAOD). Made Ground comprised of red brown gravelly clayey to very clayey fine to medium sand. Gravel consists of fine to medium sub-angular sandstone, breccia and frequent quartz, limestone, brick, china and plastic.

6.1.3 Alluvium

- 6.1.3.1 Alluvial soils were encountered in trial pits TP08, 09, 10 and 12 to the north-east of the site, these soils were encountered to depths in the range of 1m to 2.1m (33.7 to 38.25 mAOD) and comprised very soft to stiff low to very high strength red to orange brown slightly gravelly sandy to very sandy clay. Gravel consists of fine to coarse sub-angular sandstone. Sand was fine to coarse grained.
- 6.1.3.2 The following table summarises geotechnical parameters for the Alluvial soils:

Table summaris	ing soil testir	ng and deri	ved geotechni	cal parameters	
Geotechnical parameter	Method	Value range	Characteristic value	Comments	Notes
Plasticity index	Laboratory testing	14 to 21	21	Chosen as highest result	1
Undrained shear strength (kN/m ²)	Insitu testing	21 to 79kN/m ²	54	Chosen as average result Medium strength	2
Consistency index	Laboratory testing	Firm to stiff	Soft	Based on field observations	1
Density index	Insitu observations	Loose	Loose	-	-
Table 6.1.3.2					

- 1. Laboratory testing presented in Appendix G
- 2. Raw data presented in Appendix C

6.1.4 Watcombe Breccia Formation

- 6.1.4.1 The Watcombe Breccia Formation was encountered in all exploratory excavations, except TP08 to depths in excess of 14.5m (21.7 mAOD). The Watcombe Breccia Formation was encountered as coarse locally fine soils and rock at depth.
- 6.1.4.2 Coarse Watcombe Breccia Formation soils were encountered to depths in excess of 3.7m (33.6m mAOD to 45.1m mAOD) in trial pit excavations and to a depth of 6.2m (32.1m mAOD) in BH01. Coarse soils comprised loose to medium dense red brown slightly to very clayey gravelly to very gravelly fine to coarse sand. Gravel consists of fine to coarse sub-angular sandstone and breccia.
- 6.1.4.3 The Watcombe Breccia Formation was encountered as rock in the two exploratory boreholes, rock formations extended beyond the termination depths of the boreholes. The rock comprised weak red poorly sorted breccia and well sorted sandstone with frequent grading sequences from coarse to fine. Breccia clasts are fine to coarse sub-rounded grains amongst a medium grained sand matrix.
- 6.1.4.4 The following table summarises geotechnical parameters for the Watcombe Breccia Formation soils:

arameter ra	lue Characteristic Comr nge value	ments N	lotes
asticity index Laboratory 9 testing	59 9.69 One t	test value 1	
/ater content Laboratory 1 6) testing	- 17	1	
ndrained Shear Insitu testing 7 rength (kN/m²) 2	5 result	to very high strength	
ompressive Uniaxial 2 rength (MPa) testing 5	sto	1	
niformity Laboratory - pefficient from testing article size stributions		too clayey to 1 rmine a D60/D10 e	
	n to Stiff - 'Y ff		
observations n	ose to Loose - edium nse		
observations n	edium		

3. Laboratory testing presented in Appendix G

4. Raw data presented in Appendix C

6.1.4 Summary

6.1.4.1	The following table summarises the geology encountered:
---------	---

Strata	Depth to top (m)	Depth to bottom (m)	Thickness (m)	Summary description
Made Ground	0	0.6 to 2.2 (1.1) 37.2 to 45.5 mAOD	0.6 to 2.2 (1.1)	Red brown gravelly clayey to very clayey fine to medium sand
Alluvium	0 to 1.15 (0.65) 34.85 to 36.95 mAOD	1.1 to 2.1 (1.65) 33.7 to 35.15 mAOD	0.6 to 1.75 (1.3)	Very soft to firm low to medium strength red slightly sandy clay and loose very clayey sand
Watcombe Breccia Formation (fine)	0.6 to 2.2 (1.1) 37.2 to 45.5 mAOD	1.0 to 2.1 (1.6) 33.7 to 38.25 mAOD	0.4 to 1.75 (1.35)	Very soft to stiff low to very high strength red to orange brown slightly gravelly sandy to very sandy clay
Watcombe Breccia Formation (coarse)	1.0 to 2.1 (1.6) 33.7 to 38.25 mAOD	3.4 to 6.2 (4.8) 30.0 to 42.35 mAOD	>3.4	Loose to medium dense red brown slightly to very clayey gravelly to very gravell fine to coarse sand
Watcombe Breccia Formation (rock)	3.4 to 6.2 30.0 to 42.35 mAOD	Not identified	Not identified	weak red poorly sorted breccia and well sorted sandstone with frequent grading sequences from coarse to fine

Figures in brackets are average values

6.1.5 With the exception of Made Ground, the investigation generally confirmed published geological records.

6.3 Groundwater

6.3.1 Groundwater inflows were observed in some / many of the exploratory excavations. A summary of our observations is tabulated below:

Table summarising groundwater observations				
Exploratory point	Date of observation	Depth (m) below ground levels	Depth (mAOD)	Observations
TP01	03-01-2018	2.3	37.7	Seepage flowing at a rate of approximately 5 l/min
TP04	03-01-2018	2.4	40.4	Seepage flowing at a rate of approximately 2 l/min
TP04	03-01-2018	3.3	39.5	Groundwater measured 1 hour after completion
TP07	03-01-2018	2.5	32.5	Seepage flowing at a rate of approximately 5 I/min
ТР09	03-01-2018	1.5	34.3	Seepage flowing at a rate of approximately 20 I/min

Exploratory point	Date of observation	Depth (m) below ground levels	Depth (mAOD)	Observations
TP11	04-01-2018	2.1	38.6	Seepage flowing at a rate of approximately 10 l/min
TP12	04-01-2018	1.55	35.4	Seepage flowing at a rate of approximately 10 l/min
TP13	04-01-2018	1.4	38.6	Minor seepage
TP13	04-01-2018	2.1	37.9	Seepage flowing at a rate of approximately 15 l/min
BH01	04-01-2018	1.0	35.2	Measured groundwater level during drilling
BH01	05-01-2018	0.5	35.7	Measured groundwater on completion of drilling
BH01	09-02-2018	0.72	35.48	Monitoring observation
BH02	05-01-2018	1.0	38.1	Measured groundwater level during drilling
BH02	05-01-2018	0.6	38.5	Measured groundwater on completion of drilling
BH02 Table 6.3.1	09-02-2018	0.77	38.33	Monitoring observation

6.3.2 It should be noted that water levels will vary depending generally on recent weather conditions and only long-term monitoring of levels in standpipes will provide a measure of seasonal variations in groundwater levels.

6.4 Evidence of contamination

6.4.1 During excavation of our exploratory points, no evidence of contamination was noted.

6.5 Obstructions and instability

6.5.1 The following table summarises obstructions and instability encountered during our exploratory excavations;

Exploratory point	Depth of obstruction	Description of obstruction and/or instability
TP01	2 to 3m	Collapse of pit wall widening trial pit by 0.3m
ТРОЗА	0.4m	Excavation through a 25mm blue plastic water pipe, service was active. Shut-off valve located, and trial pit relocated to avoid additional damage.
TP04	2.2 to 2.4m	Collapse of pit wall widening trial pit by 0.2m on each side.
TP07	0.7 to 1.8m	Collapse of pit wall widening trial pit by 0.6m on western side. Trial pit terminated due to instability of the walls.
TP08	0 to 1.2m	Collapse of pit wall widening trial pit by 0.4m on northern side and 0.5m on southern side. Trial pit terminated due to instability of the walls.
TP09	0 to 1.6m	Collapse of pit wall widening trial pit by 0.6m. Trial pit terminated due to instability of the walls.
TP10	0.3 to 1.4m	Collapse of pit wall widening trial pit by 0.4m on each side. Trial pit terminated due to instability of the walls.
TP11	0 to 2.0m	Collapse of pit wall widening trial pit by 0.6m on western side.
TP12	0 to 2.2m	Collapse of pit wall widening trial pit by 0.5m on northern side. Trial pit terminated due to instability of the walls.
TP13	0 to 2.1m	Collapse of pit wall widening trial pit by 0.6m.

7 Geotechnical Appraisal

- 7.1 General description of the development
- 7.2 Building regulations and this report section
- 7.3 The geological model
- 7.4 Building foundation solution
- 7.5 Platform construction
- 7.6 Influence of trees and other major vegetation
- 7.7 Ground Floor Construction
- 7.8 Service Trench Excavations
- 7.9 Drainage and Infiltration Potential
- 7.10 Dissolution Features
- 7.11 Pavement Foundations
- 7.12 Reuse of excavated soils from the site

7.1 General description of the development

- 7.1.1 The following assessments are made on the investigatory data presented in the preceding sections of this report and are made with reference to specific nature of the development. Should scheme proposals change then it may be necessary to review the investigation and report.
- 7.1.2 The project will comprise the construction of a commercial warehouse unit with a footprint of approximately 50m by 35m across the ground floor together with associated hardstanding, car parking and access roads. Proposals include a mezzanine flor within the warehouse unit.
- 7.1.3 The development will require significant earthworks to create a level building platform, at this stage we understand that the cut and fill exercise is not finalised, but broadly will comprise of cutting from the southern extents of the site and place the arisings as engineered fill to the north of the site. The proposed cut levels are some 5m to 6m with fill heights up to 2m to 3m in the north.

7.2 Building regulations and this report section

7.2.1 Building Regulations

Current Approved Document A of the building Regulations references Eurocodes and their UK National Annexes as practical guidance in meeting part A requirements. Approved document A advises there may be alternative ways of achieving compliance with requirements where it can be demonstrated that the use of withdrawn standards no longer maintained by the British Standards Institution continues to meet Part A requirements.

7.2.2 This report section

This chapter of the report provides both a foundation strategy for the proposed development and geotechnical design parameters to comply with Eurocode 7 (BSEN1997-1:2004 'Geotechnical Design – part 1 General Rules' and the corresponding UK National Annex). This chapter also provides building foundation design parameters ('Traditional Methods') which relate (in part) to withdrawn British Standards. It is for the foundation designer to select the design methodology and demonstrate compliance with part A requirements.

7.2.3 Geotechnical terms

Definitions of geotechnical terms used in the following paragraphs are provided in Appendix A.

7.3 The geological model

7.3.1 Trial pit excavations and boreholes formed at the site, encountered a reasonably consistent profile of soils which are summarised in the following table:

Summary of ground	conditions encountered at the site (presen	nt)	
Strata	Summary soil type	Depth to base of strata	
		Range	
Made	Watcome Breccia Formation Derived.	0.6 - 2.2m	
Ground	Slightly gravelly sandy clay		
Alluvium	Firm to stiff red slightly gravelly sandy	1.0 – 2.1m	
	clay		
Watcombe Breccia	Slightly gravelly clayey fine to coarse	3.4 - 6.2 (BH01)	
Formation	sand		
(Coarse) WBFc			
Watcombe Breccia	Weak to medium strength breccia.	>14.5m	
Formation			
(Rock) WBFr			
Table 7.3.1			

- 7.3.2 Groundwater seepages were encountered in the trial pit excavations at depths in the range of 1.4m to 2.5m, groundwater was measured at 0.5m below ground level in the standpipe installations of BH01 and BH02 on monitoring visits. We envisage groundwater will potentially be a significant restraint on the construction of the development and will require further investigation and thus potentially careful consideration throughout the construction phase.
- 7.3.3 Following the cut and fill exercise to create a level construction platform, understood to be around 39m to 40m AOD. We anticipate Made Ground will be effectively removed from the south-west of the site with the formation in this area and through the centre of the site being WBFc, overlying WBFr deposits, further investigations will be required to establish the level of rock head which may be close or locally above the proposed platform in the west of the site. To the north-east of the site ground conditions will comprise Made Ground engineered fill overlying Made Ground and Alluvium with WBFc and WBFr at depth.

7.4 Building foundation solution

- 7.4.1 Following the cut and fill exercise the building will be located on variable deposits ranging from WBFc deposits to deposits of Made Ground 2-3m (engineered fill) overlying existing Made Ground 1m, cohesive Alluvial deposits 1m, with WBFc and WBFr deposits at depth, on this basis it is understood that a piled foundation will be adopted.
- 7.4.2 Piled foundations are discussed further in the following report sections.

7.4.3 Piled foundations

- 7.4.3.1 A piled foundation solution would transmit superstructural loads down through the Made Ground, Alluvium and Watcombe Breccia Formation soils into the Watcombe Breccia Formation bedrock at depth to obtain end bearing support. The difficulty of driving or boring piles through the Made Ground and Watcombe Breccia Formation would have to be considered by any specialist piling company and will affect the method of pile installation.
- 7.4.3.2 Piles would obtain end bearing support in the bedded Watcombe Breccia Formation. We recommend any support from the Made Ground is ignored. It is important to note the Watcombe Breccia Formation soils include groundwater which will affect the method of pile installation.

7.4.3.3 Pile design and installation

- 7.4.3.3.1 We recommend the design and installation of the piles are determined by a specialist piling contractor who has experience in pile installation in these or similar ground conditions and may be able to interpret the observed ground conditions in a different and potentially more beneficial manner. We recommend the specialist piling contractor assumes responsibility for the choice, design and installation of the piles.
- 7.4.3.3.2 We recommend piling be carried out following the *"Specification for Piling and Embedded Retaining Walls"* produced by the Institution of Civil Engineers.
- 7.4.3.3.3 It is likely that a 'piling mat' will have to be constructed in advance of piling operations. This will be designed following the Building Research Establishment publication 'Working Platforms for tracked plant: good practice guide to the design, installation, maintenance and repair of ground supported working platforms'. We will be pleased to assist in the design and specification of such a platform on further instructions.

7.5 Platform construction

- 7.5.1 Based on investigations undertaken to date there are a number of potential issues that may give rise to construction difficulties in forming the platform, while the following may not be exhaustive, these are considered at this stage to be the main risks identified:
 - Groundwater rising to above excavation level
 - Flood water/ surface water inflow promoting instability
 - Excavation collapse of retaining wall
 - Retaining wall construction
 - Difficulty in excavation of rock
 - Embedment of retaining structure into rock
 - Dissolution features (discussed in section 7.10)
 - Suitability of fill material for reuse
 - Compressible Made Ground/Alluvium below engineered fill
 - Slope failure base of slope due to loading/water movement
 - Water management

7.5.2 Water and stability

- 7.5.2.1 Based on envirocheck records indicating the site is prone to flooding from surface and groundwater, our fieldwork observations of groundwater levels measured during return monitoring visits, groundwater seepages during Trial Pit excavation and trench collapse during excavation, refer Drawing 04, We are of the opinion that water may make construction of any excavation successful.
- 7.5.2.2 Trial Pit excavations locally become unstable between 2.0m and 2.5m below ground level; this approximately coincides with the observation of seepages entering the Trial Pits likely promoting collapse. From groundwater levels measured during return monitoring which included purging and recharge of the standpipes, groundwater was measured to be less than 1m below ground level; with envirocheck records indicating that water can be present at or above surface level there is a risk of stability of any excavation at any depth.
- 7.5.2.3 Level loggers have been installed in the existing standpipes to attempt to characterise groundwater conditions, however, further standpipe installations are recommended.
- 7.5.3.4 Based on the above there is a risk of successfully constructing the retaining wall to the south-west of the site without encountering significant instability. Subject to further investigations construction options could include reduced level dig with a large a batter as possible towards the south-west to maintain stability, sacrificial or permanent sheet pile retaining wall, excavation to formation level, installation of drainage, formation of permanent retaining wall if sacrificial sheet piles used. Other options may include permeation grouting for stability in temporary conditions. We recommend a test excavation is undertaken to determine surface stability initially, including with groundwater control.

7.5.3 Excavation and embedment into rock

7.5.3.1 Exploratory excavations encountered bedded rock in BH01, BH02 and TP03A, there is a potential that these may potentially prove difficult to excavate into for traditional mechanical plant requiring the use of breaking equipment to successfully achieve depths required, and or difficult to drive into for piling purposes.

7.5.4 Compressible Made Ground/Alluvium below engineered fill

7.5.4.1 To the north-east of the site low strength Made Ground and Alluvial deposits were encountered to depths of around 2m, these deposits are compressible and may be prone to low angle failure or failure when loaded with the proposed engineered fill. Subject to the final design of the fill further investigations to determine mechanism of failure and level of settlement will be necessary.

7.5.5 Water management

7.5.5.1 The main mechanism of failure for the identified risks is the presence of water in the soils, in addition to this it is likely that future site use will potentially be affected by flooding, on this basis it will be of critical importance that the site drainage scheme has the capacity to control the water entering and flowing through the site and allow for appropriate discharge. At this stage the volume of water entering the site is unknown and would be subject to further investigation.

7.6 Influence of trees and other major vegetation

7.6.1 Soil classification and new foundation design

7.6.1.1 The results of plastic and liquid limit determinations performed on samples of the Alluvium and Watcombe Breccia Formation indicate these deposits are soils of medium and low volume change potential when classified in accordance with National House Building Council (NHBC) Standards, Chapter 4.2. Piled foundations will extend through these soils into non-shrinkable deposits at depth.

7.7 Ground Floor Construction

7.7.1 If a piled foundation is selected then a suspended floor could also be adopted supported off piled foundations.

7.8 Service Trench Excavations

7.8.1 Excavations extending to depths greater than 1.4m (subject to further investigation) are at an increasing risk of encountering water inflows, which will promote progressive instability in trench sides requiring continuous trench sheet shoring to maintain an open excavation. We anticipate water will be controlled with nominal pumping techniques.

- 7.8.2 Excavations extending to depths greater than 3m are at an increasing risk of encountering bedded WBFr deposits, which will probably require the use of breaking equipment to loosen the deposit prior to excavation.
- 7.8.3 We recommend any trench excavation requiring human entry is shored as necessary to conform with current best practice, and accepted by the Health and safety Executive (HSE) and in particular, following guidance provided in the HSE publication 'Health and safety in construction (HSG 150)' (www.hse.gov.uk)

7.9 Drainage and Infiltration Potential

7.9.1 It is possible that the predominantly granular deposits of the Watcombe Breccia soils could dispose of stormwater using infiltration systems, however, dissolution features are a known hazard in the area and thus any additional water flux from stormwater drainage could potentially promote dissolution and instability of the soils and rock at depth. On this basis we recommend that infiltration systems are not adopted at the site and the site is drained to the tributary of the Allen Brook some 50m northeast of the site.

7.10 Dissolution Features

- 7.10.1 Regional geology of the Torquay area show dissolution features are common throughout the underlying Limestone geology. Dissolution features in general comprise the following:
 - Sinkhole, formed by dissolution of near surface soils reducing their volume and creating a surface depression.
 - Dissolution pipe, a cone or pipe like cavity typically in filled with soils which has subsided into the cavity, with the infill chalk much weaker than the surrounding chalk.
 - Swallow holes, a surface feature where a void in the soils continuously or intermittently 'swallows' wholly or partially a surface stream.

7.10.2 Assessment of the risk to foundations posed by dissolution features

- 7.10.2.1 Dissolution features pose a hazard to foundations because of the presence of one or more of the following:
 - 1. Large variations in intact soil horizon
 - 2. Loose soils or superficial deposits infilling pipes
 - 3. Cavities or caves within the soils
 - 4. Dissolution widened discontinuities in the underlying rock affecting its load carrying capacity

It should be noted that these features are generally located above the groundwater table level.

- 7.10.2.2 Clearly the risk that these hazards present to a building relates to its vulnerability, which in turn relates to the foundation type. A building on shallow spread type foundations and ground bearing floors is more vulnerable than piled foundations extending through the base of these features supporting a suspended ground floor slab.
- 7.10.2.3 Research described in CIRIA report C574 concludes that the majority of recent ground subsidence occurring was induced by man. The most common activities triggering subsidence are as follows
 - Dynamic and static loading
 - Leaking drains
 - Leaking water supply pipes
 - Water flows from soakaways
 - Overzealous garden watering in dry weather

7.10.3 Risk assessment and mitigation

7.10.3.1 Unfortunately in many cases it is not possible to confidently discount the presence of dissolution features, but we have assessed the risk based on the following:

Item	Observation / enquiry	Assessed risk
Surface features	No obvious evidence of any surface	Low
	depressions in topography local to the site	
Variation in density of near	No significant variation in density of near	Low
surface soils	surface soils	
Variation in intact soil and	No significant variation in intact soil and rock	Low
rock horizon	horizon	
Adverse movement in nearby	No adverse movement in neighbouring	Low
buildings	properties close to the site (viewed from	
	public roads / footways only)	
Envirocheck data base	Assessed risk considered low	Low
Enquiries to local authority	Awaiting on response	
building control		
Table 7.7.3		

7.10.3.2 Based on the above, the risk of the site being subject to dissolution features is considered low. Although the risk is considered low, clearly there is a residual risk that dissolution features could be encountered in the construction phase, identified by voiding or locally loose soil, in which case Soiltechnics shall be advised to determine a solution.

7.10.4 Risk mitigation measures

7.10.4.1 We recommend infiltration systems are not adopted at the site and that installation of water supply pipe and drainage systems are undertaken with care to prevent leaks affecting underlying soils.

soiltechnics environmental and geotechnical consultants

7.11 Pavement Foundations

7.11.1 Criteria for design of the pavement foundation.

- 7.11.1.1 The thickness of the pavement foundation (typically unbound granular materials- or sub-base and capping materials) is derived from a combination of the following:
 - Number of passes of standard (80kN) axles from construction traffic (HGV). I.e. construction traffic loading which the foundation is required to carry.
 - The location of the water table.
 - Weather conditions at the time of construction.
 - The strength of the subgrade, determined by measurement of the California Bearing Ratio (CBR).
- 7.11.1.2 For road designs meeting the requirements of the Highways Agency, then subgrade CBR will derive a foundation layer thickness relating to differing subgrade stiffness's. (refer interim advice note 73/06).

7.11.2 Methods of determination of CBR values

7.11.2.1 The following table identifies common methods of determination of CBR values

Method	reference	Outline methodology	Advantages	Disadvantages
Direct on soil in CBR mould	BS1377 and Interim advice note 73/06 (2009)	Soil sample in steel mould. Can be undisturbed or disturbed (recompacted in mould). Load measured to force 50mm diameter steel plunger 2.5 and 5mm into soil to derive CBR	BS procedure Department for transport procedure	CBR measured at water content at time of test. CBR may not reflect changes in water content during life of pavement. Unsuitable for very coarse grained (> 20mm) soils
Plate bearing test	Interim advice note 73/06 (2009)	Load required to displace a 762mm diameter steel plate 1.25mm into the subgrade to derive a CBR	Department for transport procedure. Suitable for coarse grained soils	CBR measured at water content at time of test. CBR may not reflect changes in water content during life of pavement. Reasonably slow procedure.
Dynamic cone	Interim advice note 73/06 (2009)	Record number of blows of 8kg drop weight falling 575mm to drive 20mm 60- degree steel cone 50 to 550mm into the subgrade.	Department for transport procedure. Reasonably rapid assessment.	CBR measured at water content at time of test. CBR may not reflect changes in water content during life of pavement. Unsuitable for very coarse-grained soils
Soil classification characteristics	LR 1132 structural design of bituminous roads (Transport Research laboratory)	Measurement of plasticity or particle side distributions, and knowledge of location of water table required to derive CBR for varying construction conditions	CBR derive for subgrade during life of pavement. Simple testing. Relates to long term research and experience at the TRL	Interim Advice note 73/06 (section 5.5) says this should only be used samples cannot be taken for laboratory testing.

Undrained shear strength	TRRL report 889 Strength of clay fill subgrades: its prediction in relation to road	CBR = Cu/23, where Cu is the undrained shear strength (kN/m2).	Cu could be measured by hand held shear vane rapidly and in great quantities. Relates to	Cu measured at water content at time of test. Derived CBR may not reflect changes in water content during life of
	performance.		long term research and experience at the TRL	pavement. Unsuitable for coarse grained soils

Table 7.11.2

- 7.11.2.2 Methodology can sometimes be dictated by design manuals of a local highway authority who may adopt the road network and would probably favour methods described in Interim advice note 73/06.
- 7.11.2.3 As the project will not include roads which will be offered for adoption, we have determined CBR values based on soil classification and undrained shear strength data.

7.11.3 Location of the pavement formation

7.11.3.1 We anticipate that the proposed access road, car park and associated hardstanding areas will be located at or about existing ground levels with formation located on Alluvium or Watcombe Breccia Formation or engineered fill soils.

7.11.4 Derivation for subgrade CBR from soil classification data

7.11.4.1 Equilibrium CBR (California Bearing Ratio) values (with reference to Transport and Road Research Laboratory (TRRL) Report LR1132 '*Structural design of Bituminous Roads*') are derived from knowledge of soil classification data (plasticity index for soils exhibiting cohesion (clay type) and particle size distribution for granular soils), the location of the water table pavement thickness, and weather conditions at the time of construction. It is anticipated that excavations to formation levels will encounter a mixture of both granular and cohesive soils. Granular soils will provide numerically high CBR values, but cohesive soils will typically provide significantly lower values. Assuming an average plasticity index of say 20 for cohesive soils, a low water table, a 'thin' pavement the following equilibrium CBR values are derived for varying construction conditions

Equilibrium CBR values for differing construction conditions*						
Poor	Average	Good				
CBR = 2.5%	CBR = 4%	CBR = 4.5%				
Table 7.11.2						

*These values have been adjusted to account for the high-water table at the site.

We recommend these CBR values be utilised for design purposes and reassessed immediately prior to construction. It should also be noted that the thickness of the pavement foundation also relates to the amount and loading from construction traffic, which is discussed in detail in the Transport and Road Research Laboratory (TRRL) Report LR1132 'Structural design of Bituminous Roads'.

7.11.5 Settlement

7.11.5.1 Made Ground deposits at the site exhibit a degree of variation in compactness. Some long-term settlement of hardstandings will occur due to consolidation of the Made Ground deposits and from applied loads, particularly uniformly distributed loads. It is difficult to accurately predict levels of settlement, as potentially applied loading patterns are not known. Assuming a constantly applied uniformly distributed load of say 10kN/m², settlement in the order of 10mm could occur within 5 to 10 years of construction. Equally, some differential settlement could occur in the long term, if hardstandings are not uniformly loaded. We suggest that pavements under transient (vehicular) loads are unlikely to generate significant levels of settlement.

7.11.6 Treatment of formation

7.11.6.1 Once formation levels have been established it is recommended that the formation be trimmed and rolled following current requirements of the Highways Agency Specification for Highways Works (clause 616) (refer www.dft.gov.uk/ha/standards/mchw/vol1) Such a process will identify any soft areas, which we recommend be either excavated out and backfilled with a suitable well compacted material similar to those exposed in the sides of the resulting excavation, or large cobbles of a good quality stone rolled into the formation to stabilise the 'soft' area.

7.11.7 Subgrade frost susceptibility

7.11.7.1 The Alluvium and Watcombe Breccia Formation soils are considered frost susceptible and this may override the CBR criteria for pavement foundation design purposes.

7.11.8 Moisture susceptibility

7.11.8.1 The silty nature of the Alluvium, Watcombe Breccia Formation, Made Ground and Engineered Fill (Derived from WBF) will render them moisture susceptible with small increases in moisture content giving rise to a rapid loss of support to construction plant. We therefore recommend, as soon as formation is trimmed and rolled, that sub-base is laid in order to avoid deterioration of the subgrade in wet or frosty conditions.

7.12 Reuse of excavated soils from the site

- 7.12.1 Soils excavated from the site can be reused as bulk filling to achieve levels for the proposed store, if reused at their natural moisture content. Laboratory test results indicate that the Alluvium, Made Ground, Watcombe Breccia Formation soils exhibits moisture condition values (MCV) of between 12% and 13%. These results fall in the range of 8 to 14, which are commonly accepted values indicating these cohesive soils are acceptable for reuse in bulk earthworks. Based on a combination of soil descriptions (clays) and these MCV values we are of the opinion that the near surface Watcombe Breccia Formation and Made Ground soils can be classed as Dry Cohesive and Stony Cohesive Material (Class 2B) in accordance with the current Highways Agency 'Specification for Highway Works' (600 series) table 6/1 (refer www.dft.gov.uk/ha/standards/mchw/vol1). We recommend this specification is adopted for earthworks associated with the project.
- 7.12.2 We anticipate the bulk of the excavated materials will be generated from the near surface Made Ground and Watcombe Breccia Formation. These soils are susceptible to rapid deterioration (loss of strength) with only small increases in water content, potentially rendering the soils unacceptable for reuse and incapable of adequately supporting construction and compaction plant.
- 7.12.3 We recommend an earthworks specification is completed prior to the construction phase to outline the cut and fill operations including but not limited to the total cut/fill volumes, proposed material movements, methodology for compaction and the testing of engineered fill to be directly compared with maximum dry density and moisture content following placement and compaction.
- 7.12.4 We can provide further advice on this and provide fees for producing an Earthworks Specification on further instructions.

8 Chemical contamination

- 8.1 Contaminated land, regulations and liabilities
- 8.2 Objectives and procedures
- 8.3 Development characterisation and identified receptors
- 8.4 Identification of pathways
- 8.5 Assessment of sources of contamination
- 8.6 Initial conceptual model
- 8.7 Laboratory testing
- 8.8 Updated conceptual model
- 8.9 Risk assessment summary and recommendations
- 8.10 Statement with respect to National Planning Policy Framework
- 8.11 On site monitoring

8.1 Contaminated land, regulation and liabilities

8.1.1 Statute

8.1.1.1 Part IIA of the Environment Protection Act 1990 became statute in April 2000. The principal feature of this legislation is that the hazards associated with contaminated land should be evaluated in the context of a site-specific risk based framework. More specifically contaminated land is defined as:

"any land which appears to the local authority in whose area it is situated to be in such a condition, by reasons of substances in, on or under the land, that:

- a) Significant harm is being caused or there is a significant possibility of such harm being caused; or
- b) Pollution of controlled waters is being or is likely to be caused".
- 8.1.1.2 Central to the investigation of contaminated land and the assessment of risks posed by this land is that:
 - i) There must be contaminants(s) at concentrations capable of causing health effects (*Sources*).
 - ii) There must be a human or environmental receptor present, or one which makes use of the site periodically (*Receptor*); and
 - iii) There must be an exposure pathway by which the receptor comes into contact with the environmental contaminant (*Pathway*).
- 8.1.1.3 In most cases the Act is regulated by Borough or District Councils and their role is as follows:
 - i) Inspect their area to identify contaminated land
 - ii) Establish responsibilities for remediation of the land

- iii) See that appropriate remediation takes place through agreement with those responsible, or if not possible:
 - by serving a remediation notice, or
 - in certain cases carrying out the works themselves, or
 - in certain cases by other powers
- iv) keep a public register detailing the regulatory action which they have taken
- 8.1.1.4 For "special" sites the Environment Agency will take over from the Council as regulator. Special sites typically include:-
 - Contaminated land which affects controlled water and their quality
 - Oil refineries
 - Nuclear sites
 - Waste management sites

8.1.2 Liabilities under the Act

8.1.2.1 Liability for remediation of contaminated land would be assigned to persons, organisations or businesses if they caused, or knowingly permitted contamination, or if they own or occupy contaminated land in a case where no polluter can be found.

8.1.3 Relevance to predevelopment conditions

8.1.3.1 For current use, Part IIA of the Environmental Protection Act 1990 provides the regulatory regime. The presence of harmful chemicals could provide a 'source' in a 'pollutant linkage' allowing the regulator (local authority or Environment Agency) to determine if there is a significant possibility of harm being caused to humans, buildings or the environment. Under such circumstances the regulator would determine the land as 'contaminated' under the provision of the Act requiring the remediation process to be implemented.

8.1.4 Relevance to planned development

- 8.1.4.1 The developer is responsible for determining whether land is suitable for a particular development or can be made so by remedial action. In particular, the developer should carry out an adequate investigation to inform a risk assessment to determine:
 - a) Whether the land in question is already affected by contamination through source – pathway – receptor pollutant linkages and how those linkages are represented in a conceptual model
 - b) Whether the development proposed will create new linkages e.g. new pathways by which existing contaminants might reach existing or proposed receptors and whether it will introduce new vulnerable receptors, and
 - c) What action is needed to break those linkages and avoid new ones, deal with any unacceptable risks and enable safe development and future occupancy of the site and neighbouring land?

8.1.4.2 Building control bodies enforce compliance with the Building Regulations. Practical guidance is provided in Approved documents, one of which is Part C, *'Site preparation and resistance to contaminants and moisture'* which seeks to protect the health, safety and welfare of people in and around buildings, and includes requirements for protection against harm from chemical contaminants.

8.1.5 Pollution of controlled waters

8.1.5.1 Part IIA of the Environment Protection Act 1990, defines pollution of controlled waters as

'The entry into controlled waters of any poisonous, noxious or polluting matter or any solid waste matter'

8.1.5.2 Paragraphs A36 and A39 of statutory guidance (DETR 2000) further define the basis on which land may be determined to be contaminated land on the basis of pollution of controlled waters.

'Before determining that pollution of controlled waters is being, or likely to be, caused, the Local Authority should be satisfied that a substance is continuing to enter controlled waters, or is likely to enter controlled waters. For this purpose, the local authority should regard something as being likely when they judge it more likely than not to occur'

'Land should not be designated as contaminated land where:

- a) A substance is already present in controlled waters:
- *b)* Entry into controlled waters of that substance from the land has ceased, and
- c) It is not likely that further entry will take place.

Substances should be regarded as having entered controlled waters where:

- a) They are dissolved or suspended in those waters; or
- *b) If they are immiscible with water, they have direct contact with those waters, or beneath the surface of the waters'*
- 8.1.5.3 Controlled waters are defined in statute to be:

'territorial waters which extend seawards for 3 miles, coastal waters, inland freshwaters, that is to say, the waters in any relevant lake or pond or of so much of any relevant river or watercourse as is above the freshwater limit, and groundwaters, that is to say, any waters contained in underground strata.'

8.1.6 Further information

8.1.6.1 The above provides a brief outline as regards current statute and planning controls. Further information can be obtained from the Department for the Environment, Food and Rural Affairs (DEFRA) and their Web site <u>www.defra.gov.uk</u>.

8.2 **Objectives and procedures**

8.2.1 Objectives

- 8.2.1.1 This report section discusses investigations carried out with respect to chemical contamination issues relating to the site. The investigations were carried out to determine if there are any liabilities with respect to Part IIA of the Environment Protection Act. As stated in Section 2.4.2, the investigation process followed the principles of BS10175: 2011 'Investigation of potentially contaminated sites Code of Practice', with the investigation combining a desk study (preliminary investigation) together with the exploratory and main investigations (refer BS10175: 2011 for an explanation).
- 8.2.1.2 This section of the report produces 'Conceptual models' based on investigatory data obtained to date. The conceptual model is constructed by identification of contaminants and establishment of feasible pathways and receptors. The conceptual model allows a risk assessment to be derived. Depending upon the outcome of the risk assessment it may be necessary to carry out remediation and/or further investigations with a view to eliminating, reducing or refining the risk of harm being caused to identified receptors. If appropriate, our report will provide recommendations in this respect.
- 8.2.1.3. Clearly we must consider the current pre-development condition, establishing risks which may require action to render the site safe to all relevant (current) receptors meeting the requirements of current legislation (Part IIA of the Environmental Protection Act 1990).
- 8.2.1.4 Definition of terms used in the preceding paragraph and subsequent parts of this section of the report are presented in Appendix B.

8.2.2 Procedure to assess risks of chemical contamination

8.2.2.1 For the purposes of presenting this section of this report, we have adopted the following sequence in assessing risks associated with chemical contamination.

Table outlining s	Table outlining sequence to assess risk associated with chemical contamination			
Conceptual model element	Contributory information	Outcome		
Receptor	Development categorisation	Identification of receptors at risk of being harmed		
		Method of analysing test data Criteria for risk assessment modelling		
Pathways	Geology and ground conditions Development proposals	Identification of critical pathways from source to receptor		
Source	Previous site history Desk study information Site reconnaissance Fieldwork observations	Testing regime Identification of a chemical source Analysis of test data and other evidence		
Table 8.2.2				

8.2.2.2 We have adopted, in general, the procedures described in CIRIA C552 'Contaminated land risk assessment - a guide to good practice' in deriving a risk assessment. Initially we have carried out a 'phase 1 assessment' based on desk study information and site reconnaissance, to produce an initial conceptual model and thus a preliminary risk assessment. This model / assessment is then used to target fieldwork activities and laboratory testing, with the results of this part of the investigation used to allow a phase 2 assessment to be produced by updating the conceptual model and refining the risk assessment.

8.3 Development characterisation and identified receptors

8.3.1 Site characterisation

8.3.1.1 The nature of the site has a significant influence on the likely exposure pathways between potentially contaminated soils and potential receptors. The following table summarises elements which characterise the site based on site observations and desk study information.

Element	Source / criteria	Characteristic
Current land use	Observations	Open field accessible to the public.
Future land use	Advice	Commercial warehouse and retail unit
Site history	Desk study	Open fields until present day
Geology	Desk study/ Site investigation	Watcombe Breccia Formation or Made Ground derived from the Watcombe Breccia Formation at crop. Rock encountered at 6 to 7m depth.
Ground water	Aquifer potential	Secondary A aquifer in the Alluvium and Watcombe Breccia Formation an
	Abstractions	Closest is recorded 166m north-west of the site with water used for Agricultural Spray Irrigation.
	Source protection zone	Site not within source protection zone
Surface waters	Location	Tributary of the Allen Brook located 50m north-east of the site.
	Abstractions	Closest lies 135m north with water used for Agricultural Spray Irrigation.

8.3.2 Identified receptors

8.3.2.1 The principal receptors subject to harm caused by any contamination of the proposed development site are as follows.

Principle Receptor	Detail	
Humans	Users of the current site	
	End user of the developed site	
	Construction operatives and other site investigators	
Vegetation	Plants and trees, both before and after development	
Controlled waters	Surface waters (Rivers, streams, ponds and above ground reservoirs)	
	Ground waters (used for abstraction or feeding rivers / streams etc)	
Building materials	Materials in contact with the ground	
Table 5.3.2		

This section of the report assesses those receptors listed above. Section 10 provides a risk assessment in relation to building materials.

8.3.3 Human receptors

- 8.3.3.1 The Contaminated Land Exposure Assessment (CLEA) model can be used to derive guideline values, against which land quality data can be compared to allow an assessment of the likely impacts of soil contamination on humans. The parameters used within the model can be chosen to allow guideline values to be derived for a variety of land uses and exposure pathways. For example, a construction worker is likely to be exposed in different ways and for different durations than an adult in a residential setting.
- 8.3.3.2 The site is currently unsecured open ground. While it is feasible that members of the public would access the site, this would likely be on such a sporadic basis and for such short periods of time that it would not be practical (or indeed meaningful) to designate such persons as 'site users'. A current site user is therefore not considered to be present.
- 8.3.3.3 Following completion of the proposed commercial development the critical site user (receptor) would be an adult. This criterion has been used in the conceptual model for the future site use. Our assessment also considers construction operatives as adult receptors.

8.3.4 Vegetation receptors

- 8.3.4.1 Soil contaminants can have an adverse effect on plants if they are present at sufficient concentrations. The effects of phytotoxic contaminants include growth inhibition, interference with natural processes within the plant and nutrient deficiencies.
- 8.3.4.2 There is currently vegetation on site and the proposed development is likely to include soft landscaping. Vegetation is therefore considered to be a potential sensitive receptor.

8.3.5 Water receptors

- 8.3.5.1 The site is underlain by a secondary A aquifer within the Watcombe Breccia Formation. The nearest groundwater abstraction is located 166m north-west of the site. Groundwater is therefore considered to be a potential sensitive receptor.
- 8.3.5.2 The nearest watercourse is the tributary of the Allen Brook located 50m north-east and downgradient of the site. On this basis, surface waters are considered to be a potential sensitive receptor.

8.3.6 Summary of identified receptors

8.3.6.1 Based on the above assessments, the following table summarises identified and critical receptors.

Principle	Detail	Viable and critical receptors			
Receptor		Viabilit	y and justification	Critical receptor	
Humans	Users of the current site	No	Site unsecured		
			but not 'in use'.		
	End user of the developed site	Yes	Commercial	Adult	
			property		
	Construction operatives and	Yes	Required for	Adult	
	other site investigators		development		
Vegetation	Current site	Yes	Trees on site	Vegetation	
	Developed site	Yes	Trees to remain	Vegetation	
Controlled	Surface waters (Rivers,	Yes	Allen Brook 50m	Surface waters	
waters	streams, ponds and above		north-east		
	ground reservoirs)				
	Ground waters (used for	Yes	Site over	Groundwater	
	abstraction or feeding rivers /		Secondary A		
	streams etc)		aquifer. No SPZ.		
			Closest		
			abstraction is		
			166m away.		
Building	Materials in contact with the	Yes	Assessed in	Building materials	
materials	ground		report section 10		
Table 8.3.6					

8.4 Identification of pathways

8.4.1 Pathways to human receptors

8.4.1.1 Guidance published by the Environment Agency in Science Report SC050021/SR3 *'Updated technical background to the CLEA model'* provides a detailed assessment of pathways and assessment and human exposure rates to source contaminants. In summary, there are three principal pathway groups for a human receptor:

Table summarising likely pathways			
Principal pathways	Detail		
Ingestion through the mouth	Ingestion of air-borne dusts		
	Ingestion of soil		
	Ingestion of soil attached to vegetables		
	Ingestion of home grown vegetables		
Inhalation through the nose and mouth.	Inhalation of air-borne dusts		
	Inhalation of vapours		
Absorption through the skin.	Dermal contact with dust		
	Dermal contact with soil		
Table 8.4			

- 8.4.1.2 The site is to be developed for commercial use. The presence of a building and hardstanding across the majority of the site will severely restrict pathways for the exposure of site users to potentially contaminated soils. However, the majority of the pathways are considered to be present within the areas of soft landscaping. Pathways associated with the consumption of home-grown vegetables are not considered relevant for site users or construction operatives.
- 8.4.1.3 A summary of our pathway assessment is presented in Section 8.4.4.

8.4.2 Pathways to vegetation

- 8.4.2.1 Guidance published by the Environment Agency in Science Report SC050021/SR (Evaluation of models for predicting plant uptake of chemicals from soil) provides a detailed assessment of plant uptake pathways. In summary, plants are exposed to contaminants in soils by the following pathways:
 - Passive and active uptake by roots.
 - Gaseous and particulate deposition to above ground shoots.
 - Direct contact between soils and plant tissue.
- 8.4.2.2 All of the above routes of exposure are considered to be present for vegetation.

8.4.3 Pathways to controlled waters

- 8.4.3.1 A number of pathways exist for the transport of soil contamination to controlled waters. A summary of these pathways is presented below:
 - Percolation of water through contaminated soils.
 - Near-surface water run-off through contaminated soils.
 - Saturation of contaminated soils by flood waters.
- 8.4.3.2 Horizontal run-off through the Made Ground and Watcombe Breccia Formation is possible and given the close proximity of the nearest watercourse, this is considered to be a viable pathway.
- 8.4.3.3 The Watcombe Breccia Formation were observed to be coarse soils and groundwater was encountered in many of the excavations. Based on these observations, it is considered likely that percolation of water through contaminated soils could impact the groundwater beneath the site.
- 8.4.3.4 The site is located adjacent to a fluvial flood plain and is considered at low risk of surface water flooding. On this basis saturation of contaminated soils by flood waters is considered a viable pathway.

8.4.4 Summary of identified likely pathways

8.4.4.1 Based on the above assessments, the following table summarises likely pathways of potential chemical contaminants at the site to identified receptors.

Critical receptor	Pathway
Adult	Ingestion of air-borne dusts
	Ingestion of soil
	Inhalation of air-borne dusts
	Inhalation of vapours
	Dermal contact with dust
	Dermal contact with soil
	Root uptake, deposition to shoots and foliage contact.
Groundwater	Percolation of water through contaminated soils
	Saturation of contaminated soils by flood waters
Surface water	Near-surface water run-off through contaminated soils
	Adult Groundwater

8.5 Assessment of sources of chemical contamination

8.5.1 Introduction

- 8.5.1.1 Initially, potential sources of contamination are assessed using the following elements of the investigation process.
 - History of the site
 - Desk study information
 - Site reconnaissance
 - Geology
 - Fieldwork

These elements will dictate a relevant soil/water testing regime to quantify possible risks of any identified contaminative sources which may harm identified receptors.

8.5.2 Source assessment – History of the site

- 8.5.2.1 The history of the site and its immediate surroundings based on published Ordnance Survey maps is described in Section 3.
- 8.5.2.2 Based on published historical maps, there is no evidence to indicate the site has been subject to activities likely to result in a source of chemical contamination.
- 8.5.2.3 Railway lines are recorded 50m to the north-east of the site, however these are considered too remote from the site to represent a potential source of contamination. A car dealership and service centre is recorded adjacent to the east of the site after 2016. As this new business is highly likely to have been constructed to current environmental protection standards, it is considered very unlikely this will represent a current or significant future source of contamination.

8.5.3 Source assessment – Desk study information

- 8.5.3.1 Envirocheck presents a detailed database of environmental information in relation to the site including;
 - Pollution incidents
 - Landfill sites
 - Trading activities
- 8.5.3.2 Based on the Envirocheck data (refer Appendix P) the area surrounding the site has a record of six minor and one significant incidents to controlled waters within 500m of the site. The closest minor incident records the pollutant as Rubble/Litter or Solids and is recorded 35m north-west and upstream of the site. The closest significant incident records the pollutant as Surface Water and is recorded 479m to the east of the site. Both incidents record freshwater stream/river as the receiving watercourse. The last recorded pollution incident was recorded in 1994. Given the elapse in time between the pollution incidents to the present day, the risk of contamination migrating to the subject site is considered low-likelihood.
- 8.5.3.3 Envirocheck records three historic landfill sites 1000m of the site. The closest historical landfill is recorded 67m east of the site and waste included inert and industrial waste. The last input is recorded as July 1991. These activities are potential sources of contamination and the risk of contamination migrating to the site subject site is considered likely.
- 8.5.3.4 Envirocheck records a number of trading activities within 500m of the site. The closest activity is recorded 188m north of the site and comprises an active lawnmower and garden machinery sales and services outlet. Other activities within 250m include sports equipment manufacturers and an inactive recycling centre some 200m southeast and 230m south west respectively. These activities are potential sources of contamination although given the distance from site, the risk of contamination migrating to the site subject site is considered low-likelihood.

8.5.4 Source assessment – Site reconnaissance

- 8.5.4.1 A full description of the site and observed adjacent land uses is provided in Section 3 of this report. A plan summarising observations made on site during our site reconnaissance visit is presented on Drawing 02.
- 8.5.4.2 We did not observe any obvious evidence of any current or recent activities on site or adjacent sites likely to result in a potential source of chemical contamination.

8.5.5 Source assessment – Geology

8.5.5.1 The geological map of the area indicates that the site is underlain by Alluvium and Watcombe Breccia Formation deposits. Typically, and in our experience, these strata do not exhibit any abnormal concentrations of naturally occurring chemical contaminants.

8.5.6 Source assessment - Fieldwork observations

- 8.5.6.1 Made Ground was observed to depths of 2.2m. Based on the site history and our observations of these soils, Made Ground soils represent a low likelihood of a source of contamination.
- 8.5.6.2 None of the exploratory excavations exposed soils or groundwater displaying visual or olfactory evidence to indicate the presence of a source of chemical contamination.

8.5.7 Source assessment - summary

8.5.7.1 Based on the paragraphs above, we have identified the following potential sources of contamination:

Origin of information	Possible contaminant	Probability of risk occurring	Likely extent of contamination
Site investigation	Organics and inorganics	Low likelihood	Southern extents of the site
-	-	-	-
	Site investigation	Site Organics and investigation inorganics	Site Organics and Low likelihood investigation inorganics

8.6 Initial Conceptual Model

- 8.6.1 Based on our assessment of potential contaminative sources, identified receptors and viable pathways to receptors described in preceding paragraphs, we have produced an initial conceptual model in the form of a table which is presented in Appendix I.
- 8.6.2 Based on the conceptual model the initial assessment of risk of chemical contamination causing harm to identified receptors exceeds the low category, requiring further investigation by laboratory testing of soil samples.
- 8.6.3 The risk to controlled waters is considered low and controlled waters, have not therefore been considered further in this report.

8.7 Laboratory testing

8.7.1 Testing regime

8.7.1.1 In order to carry out a quantitative assessment, we have scheduled testing to measure the concentration of commonly occurring inorganic and organic contaminants.

soiltechnics environmental and geotechnical consultants

8.7.1.2 The following table summarises the chemical testing scheduled as well as a rationale for the testing;

Table sum	marising	scheduled testin	g		
Exploratory point	Depth (m)	Strata/ medium	Targeted sampling?	Scheduled testing	Rationale
TP02	0.2	Made Ground	Ν	SOIL Suite 1	General site
TP04	0.2	Watcombe Breccia Formation	Ν		coverage
TP06	0.2	Made Ground	Y	-	
TP07	0.2	-	Y	-	
TP09	0.2	-	Y	-	
TP08	0.3	Made Ground	Y	SOIL Suite 7	
TP04	3.4	Groundwater	N	WATER Suite 9	
TP10	0.4	Alluvium	N	SOIL Suite 13	
TP01	0.1	Watcombe Breccia Formation	Ν	Asbestos presence/absence	
TP02	0.2	Made Ground	N	-	
TP05	0.2	_	N	_	
TP06	0.7	_	N	-	
TP07	0.5		Y	-	
Table 8.7.1.2					

8.7.1.3 Obviously, additional testing (quantity and types) would allow a more accurate risk assessment to be made. The results of laboratory determination of concentration of chemical contaminants are presented in Appendix G.

8.7.2 Criteria for assessment of test data – Human receptors

- 8.7.2.1 Assessment of laboratory test data has been carried out with reference to current nationally recognised documents listed in the final page of Appendix A. Due to changes in guidance on contaminated land, items 6-8 and item 10 in the document listing above have been withdrawn. In the absence of alternative guidance however we have used these documents. Where new guidance is available, this has been followed in preference to superseded guidance.
- 8.7.2.2 The Land Quality Management (LQM) and the Chartered Institute of Environmental Health (CIEH) have derived Suitable for Use Levels (S4ULs) which are presented in *'The LQM/CIEH S4ULs for Human Health Risk Assessment'* (2015). S4ULs have been used as a screening tool to assess the risks posed to the health of humans from exposure to soil contamination in relation to appropriate land uses. Where published S4ULs are not available, we have adopted C4SLs (Category 4 Screening Levels) produced by DEFRA or SGVs (Soil Guideline Values) as appropriate. In the absence of any of these criteria we have adopted Soil Screening Values (SSV) derived by Soiltechnics and by Atkins (SSV^{ATK}). The CLEA model used to derive SSVs has been used with toxicology data presented by the EA, LQM/CIEH and Atkins (in that order of preference). SSVs produced by Atkins are presented on their ATRISK^{SOIL} website.

- 8.7.2.3 S4ULs, C4SLs, SGVs, SSVs and SSV^{ATK}s represent 'intervention values'; indications to an assessor that soil concentrations above these levels might present an unacceptable risk to the health of site users. These guideline values have been produced using conceptual exposure models, which use assumptions and are applied to differing end uses of land. If the values are exceeded, it does not necessarily imply there is an actual risk to health and site-specific circumstances should be taken into account. Conversely, where a critical pathway or chemical form of the contaminant has not been evaluated, a risk may be present even if the adopted guideline value has not been exceeded.
- 8.7.2.4 For evaluation of test data in relation to polycyclic aromatic hydrocarbon (PAH), phenols and total petroleum hydrocarbon (TPH) contamination, we have compared measured concentrations with corresponding S4ULs. The S4UL fractions are dependent on the Soil Organic Matter (SOM) content of the soils. We have adopted the relevant guideline values based on SOM testing.
- 8.7.2.5 We have followed procedures outlined by the CIEH to compare measured concentrations of metals and PAH contaminants against guideline values. TPH contamination results are compared directly with the relevant guideline values. The guidance presents an approach to data analysis and includes the examination of data for potential outliers, assessment of the normality of the test data and the calculation of a 95% Upper Confidence Limit (UCL). The UCL provides an estimate of the population mean, based on test data, with a 95% confidence that the actual mean does not exceed this value. The UCL is compared to the guideline value for the site.
- 8.7.2.6 We have adopted a commercial land use for current and proposed site users.

8.7.3 Criteria for assessment of test data – Construction operatives

8.7.3.1 In the absence of guidelines we have adopted industrial guideline values for assessment of construction operatives.

8.7.4 Criteria for assessment of test data – Vegetation

- 8.7.4.1 Guidance published by Forest Research in "BPG Note 5 Best Practice Guidance for Land Regeneration" suggests that a residential without plant uptake or industrial/commercial CLEA model should be adopted for this receptor although specific guideline values are provided for copper and zinc at 130mg/kg and 300mg/kg respectively. As a practice we have adopted the industrial / commercial CLEA model for assessment of test data for vegetation.
- 8.7.4.2 It is difficult to quantify the phytotoxity of a contaminant as large variations exist between plant tolerances, soil effects and synergistic/antagonistic reactions between chemicals. Due to the complexities of the effects of soil contamination on different plant species, we recommend that the test results presented in this report are passed to a landscape architect for the selection of suitable planting.

soiltechnics environmental and geotechnical consultants

8.7.5 Criteria for assessment of test data – Controlled waters

8.7.5.1 At this stage, laboratory analysis specific to controlled water receptors has not been scheduled. This will be reviewed on analysis of data relating to total concentrations of contaminants.

8.7.6 Evaluation of test data – Human receptors

8.7.6.1 Tables summarising and analysing test data are presented in Appendix H. The following table summarises the outcome of the analyses.

Table summarising assessment of test data for human receptors							
Analysis tables	Receptor group	Critical receptor	CLEA model	Inorganic contaminants	Organic contaminants		
1, 2 and 5	Current and future site users and Construction Operatives	Adult	Industrial / commercial	No exceedances	No exceedances		
Table 8.7.6.1							

- 8.7.6.2 Organometals were not measured at concentrations above the limit of detection in any of the samples analysed.
- 8.7.6.3 Asbestos was not detected in any of the samples submitted for screening.
- 8.7.6.4 Based on the above, laboratory testing has not identified any measured concentrations of contaminants which exceed current guideline values for human receptors. Based on the above evaluation, the concentrations of contaminants measured on soil samples taken from the site are considered unlikely to exhibit significant contamination from a perspective of human receptors

8.7.7 Evaluation of test data – Vegetation

- 8.7.7.1 Comparison of test data with guideline values is presented on Tables 4 and 6 in Appendix H. None of the measured concentrations exceed the adopted guideline values. On this basis, we are of the opinion that measured concentrations are unlikely to exhibit significant contamination with respect to vegetation.
- 8.7.7.2 It is difficult to quantify the phytotoxity of a contaminant as large variations exist between plant tolerances, soil effects and synergistic/antagonistic reactions between chemicals. Due to the complexities of the effects of soil contamination on different plant species, we recommend that the test results presented in this report are passed to a landscape architect for the selection of suitable planting.

8.8 Updated conceptual model

8.8.1 Having now completed analysis of laboratory testing, we can now update our conceptual model which is presented in Appendix I.

8.8.2 Based on the updated conceptual model none of the assessed risks exceed the low category and on this basis no remedial action is considered necessary at this stage to render the site fit for purpose.

8.9 Risk assessment summary and recommendations

8.9.1 Based on our assessments described above, we can provide the following summary and recommendations for each identified receptor.

8.9.2 Current and proposed site users

8.9.2.1 As no source of significant chemical contamination has been identified on site, we are of the opinion that the site represents a low risk of causing harm to the health of identified current users of the site.

8.9.3 Construction operatives and other site investigators

- 8.9.3.1 The risk of damage to health of construction operatives and other site investigators is, in our opinion, low. As a precautionary approach, however, we recommend adequate hygiene precautions are adopted on site. Such precautions would be:-
 - Wearing protective clothing particularly gloves to minimise ingestion from soil contaminated hands.
 - Avoiding dust by dampening the soils during the works.
 - Wearing masks if processing produce dust.
- 8.9.3.2 Guidance on safe working practices can be obtained from the following documents
 - The Health and Safety Executive Publication "Protection of Workers and the General Public during the Development of Contaminated Land" (HMSO) and
 - "A Guide to Safer Working on Contaminated Sites" (CIRIA Report 132).
- 8.9.3.3 In addition, reference should be made to the Health and Safety Executive. In all cases work shall be undertaken following the requirements of the Health and Safety at Work Act 1974 and regulations made under the Act including the COSHH regulations.

8.9.4 Controlled waters

8.9.4.1 As no source of significant chemical contamination has been identified on site, we are of the opinion that the site represents a low risk of causing harm to water receptors

8.9.5 Vegetation

8.9.5.1 As no source of significant chemical contamination has been identified on site, we are of the opinion that the site represents a low risk of causing harm to vegetation.

8.10 Statement with respect to National Planning Policy Framework

8.10.1 Based on investigations completed to date with respect to chemical contamination, we are of the opinion the proposed development will be safe and suitable for use for the purpose for which it is intended (without the need for any remedial action) thus meeting the requirements of the National Planning Policy Framework section 121, and compliant with the Building Regulations Part C, *'Site preparation and resistance to contaminants and moisture'*

8.11 On Site Monitoring

8.11.1 We have attempted to identify the potential for chemical contamination on the site, however, areas, which have not been investigated at this stage, may exhibit higher levels of contamination. If such areas are exposed at any time during construction we will be pleased to re-attend site to assess what action is required to allow the development of safely proceed.

9 Gaseous contamination

9.1	Legislative framework
9.2	General
9.3	Assessment of source of gases
9.4	Gas migration
9.5	Conceptual model
9.6	Development categorisation
9.7	Monitoring observations
9.8	Classification of site characteristic gas situation
9.9	Gas protective measures
9.10	Statement with respect to National Planning Policy Framework

9.1 Legislative framework

- 9.1.1 There is currently a complex mix of documentation relating to legislative and regulatory procedures on the issue of contamination and it is not considered a purpose of this report to discuss the detail of these regulations. Essentially, Government Policy is based on *'suitable for use approach'*, which is relevant to both the current and proposed future use of land. For current use Part IIA of the Environmental Protection Act 1990 provides the regulatory regime (see Section 8.1 above). The presence of harmful soil gases could provide a *'source'* in a *'pollutant linkage'* allowing the regulator (Local Authority) to determine if there is a significant possibility of harm being caused to humans, buildings or the environment. Under such circumstances the regulator would determine the land as *'contaminated'* under the provision of the Act requiring the remediation process to be implemented with the Environment Agency responsible for enforcement.
- 9.1.2 The Town and Country Planning (General Development Procedure) Order 1995, requires the planning authority to consult with the Environment Agency before granting planning permission for development on land within 250 metres of land which is being used for deposit of waste, (or has been at any time in the last 30 years) or has been notified to the planning authority for the purposes of that provision.
- 9.1.3 Building control bodies enforce compliance with the Building Regulations. Practical guidance is provided in Approved documents, one of which is Part C, *'Site preparation and resistance to contaminants and moisture'* which seeks to protect the health, safety and welfare of people in and around buildings and includes requirements for protection against harm from soil gas.

9.2 General

9.2.1 The following assessment relates to the potential for, and the effects of, gases generated by biodegradable matter. A separate, but related class of problem involves migration of vapour phase of hydrocarbons resulting from spillages of petroleum and solvents, but this is addressed under organic contamination in Section 8. The potential for the development to be affected by radon gas is considered in Section 3 above. The principal ground gases are carbon dioxide (CO₂) and methane (CH₄). The following table provides a summary of the effects of these gases when mixed with air.

Significant gas concentrations in air				
Gas	Concentration	Consequence		
	by volume			
Methane	0.25%	Ventilation required in confined spaces		
	5 - 15%	Potentially explosive when mixed with air		
	30%	Asphyxiation		
	75%	Death after 10 minutes		
Carbon Dioxide	0.5%	8 hour long term exposure limit (LTEL) (HSE workplace limit)		
	1.5%	15 min short term exposure limit (STEL) (HSE workplace limit)		
	>3%	Breathing difficulties		
	6-11%	Visual distortion, headaches, loss of consciousness, possible		
		death		
	>22%	Death likely to occur		
Table 9.2.1				

9.2.2 Following the current Building Regulations Approved Document C1, Section 2 '*Resistance to Contaminants*' (2004 incorporating 2010 and 2013 amendments) a risk assessment approach is required in relation to gaseous contamination based on the source-pathway-receptor conceptual model procedure. We have adopted procedures described in the following reference documents for investigation and assessments of risk of the development being affected by landfill type gases (permanent gases) and if appropriate the identification of mitigation measures.

- BS10175:2011 'Investigation of potentially contaminated sites- Code of Practice'
- BS8576:2013 'Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOCs)'
- BS8485:2015 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings'
- CIRIA Report C665 'Assessing risks posed by hazardous ground gases to buildings' (2007)
- CL:AIRE Research Bulletin RB17 'A pragmatic approach to ground gas risk assessment' (November 2012)

Whilst we have followed the guidance and recommendations of BS8576, we have used BS8485:2015 to derive recommendations for protective works.

- 9.2.3 An assessment of the risk of the site being affected by ground gases is based on the following aspects:
 - a) Source of the gas
 - b) Investigation information
 - c) Migration feasibility
 - d) Sensitivity of the development and its location relative to the source

9.3 Assessment of source of gases

9.3.1 General sources

9.3.1.1 The following table summarises the common sources of ground gases and parameters affecting the generation of ground gases:

Source and control of gases				
Туре	Parameters affecting the rate of gassing			
Landfills	Portion of biodegradable material, rate reduces with time			
Mineworkings	Flooding reduces rate of gassing			
Dock silt	Portion of organic matter			
Carbonate deposits	Ground / rainwater (acidic) reacts with some carbonates to			
	produce carbon dioxide.			
Made Ground	Thickness of Made Ground and proportion of degradable organic			
	matter			
Naturally deposited	Portion of organic matter			
soils/rocks				
Table 9.3.1				

The rate of decomposition in gas production is also related to atmospheric conditions, pH, temperature, and water content / infiltration.

9.3.1.2 As the site is not within a dockland environment or an area affected by mineworkings, and near surface soils do not exhibit high carbonate content, then potential gas sources are limited to landfills and/or soils with a high proportion of organic matter.

9.3.2 Landfill and infilled ground sources

- 9.3.2.1 Waste Management Paper 27 (1991) produced by the Department of the Environment 'Control of Landfill Gases' contains the recommendation to avoid building within 50m of a landfill site actively producing large quantities of landfill type gases and to carry out site investigations within a zone 250m beyond the boundary of a landfill site. No distinction is made between sites of differing ground conditions, but the paper does not advocate the site is safe beyond the 250m zone, dependant, of course, upon the type of landfill and potential for migration of landfill gases.
- 9.3.2.2 A number of registered/historic landfill sites are recorded in the area. The following table summarises these landfill sites:

Landfill name	Туре	Location	Waste authorised	Licence status
Scotts Bridge	Historical and	67m N and	Inert, construction and	Closed
	registered	141m E	demolition, asbestos Sheet &	
			Pipes	
Kerswell	Historical and	328m N	Inert waste	Superseded
Gardens	registered		Asbestos	
S R Lancaster	Historical and	635m NE	Inert waste	Cancelled
	registered			

- 3.6.2 Envirocheck records three areas of potentially infilled land (water) within 1km of the site. The closest of which is recorded 606m to the south-east of the site. No details regarding the use of the infilled land are provided.
- 3.6.3 In addition, Envirocheck record two BGS mineral sites within 1000m of site, the closest of which lies 236m south-east of site. Both mineral sites are recorded as opencast quarrying of the Watcombe and Torbay Breccia Formation.
- 9.3.2.4 Based on the above, landfilland infilled ground records suggest a low likelihood of a presence of a source of ground gasses in the area worthy of further consideration.

9.3.3 Soil conditions

9.3.3.1 None of the soils observed in exploratory excavations, in our opinion, exhibit significant concentrations of organic matter which are likely to produce elevated quantities of carbon dioxide and / or methane gas.

9.3.4 Source assessment summary

9.3.4.1 The following table summarises the possibility of a source of landfill type gases.

Source assessment summary					
Potential source origin	Viability of source	Evidence			
Landfills	Low likelihood	Desk study information Restored opencast quarry 250m from site – source of backfill not known.			
Mineworkings	Unlikely	Desk Study information Geological conditions not amenable			
Dock silt	Unlikely	Site remote from dockland environment			
Carbonate deposits	Unlikely	Recorded and observed soil conditions do not indicate high concentrations of carbonates			
Made Ground	Unlikely	Made Ground <2m thick, considered to be naturally derived			
Soils / rocks	Low liklihood	Alluvium soils recorded though soils exposed in exploratory excavations do not exhibit high concentrations of organic matter			
Table 9.3.4					

9.3.4.2 Based on the above it there is a possibility of a source of potential landfill gases which may affect the subject site. On this basis, it is considered necessary to consider possible pathways for migration of ground gases from this potential source to the site.

9.4 Gas migration

9.4.1 Exploratory excavations encountered a reasonably consistent deposit of Alluvium overlying the Watcombe Breccia Formation to depths of in excess of 15m, both formations in our opinion are relatively permeable and would provide little resistance to both lateral and vertical migration of landfill type gases. In addition, based on published geological records the Watcombe Breccia Formation extend from the subject site to the former landfill site to the east and the former mineral sites. On this it is considered possible that the potential source of landfill type gases (identified in Section 9.3 above) would feasibly migrate to the subject site.

9.5 Conceptual model

9.5.1 Based on the above, there is a potential source of landfill type gases (albeit lowlikelihood), and a feasible migration pathway to the site via potentially permeable Watcombe Breccia Formation deposits. Our conceptual model is tabled below. At this stage, it is not considered necessary to implement a monitoring regime following procedures described in BS8576:2013, however we have installed ground gas monitoring standpipes at the site to enable a precautionary quantitative risk assessment.

Conceptual model		
Potential source origin	Potential pathway	Receptors at risk
Alluvium deposits	Site partially underlain	End users
	by Alluvium deposits	Construction operatives
		Buildings
Landfills and infilled ground	Via Alluvium and/or	End users
	Watcombe Breccia	Construction operatives
	Formation	Buildings
Table 9.5.1		

9.6 Development categorisation

9.6.1 With reference to BS8485:2015 (table 3), the proposed building type would be classified as '*Type C- Commercial/public*'.

9.7 Monitoring observations

- 9.7.1 Two standpipes have been installed at the site in accordance with BS9576:2013, Section 9 (refer Drawing 05). We have returned to site on one occasion to obtain measurements of landfill type gases at atmospheric conditions in the range of 1012 to 1017mb and a temperature of 4°C. Essentially, we detected concentrations of methane of 0.1% and concentrations of carbon dioxide measured in the range of 0.3 to 1.1%. If flows were detected during our monitoring visits then these are recorded, but where no flow is detected then we have assumed flow at the detection limit of the monitoring equipment at 0.11/s.
- 9.7.2 Gas monitoring results are summarised in Appendix J.

9.8 Classification of site characteristic gas situation

- 9.8.1 Using test data and with reference to Table 2 of BS8485:2015, the site would be classified as characteristic gas situation **one**.
- 9.8.2 Clearly further monitoring will increase the accuracy of this risk assessment, however in our opinion an in view of our assessment of the significance of potential ground gas sources, data collected to date is sufficient to demonstrate a low risk.

9.9 Gas protective measures

9.9.1 Based on monitoring observations to date, development categorisation (section 9.6 above) and the site characteristic gas situation (section 9.8 above) and with reference to Table 4 of BS8485:2015, the development does not require any gas protective measures.

9.10 Statement with respect to National Planning Policy Framework

9.10.1 Based on investigations completed to date with respect to gaseous contamination, we are of the opinion the proposed development will be safe and suitable for use for the purpose for which it is intended (without the need for any remedial action) thus meeting the requirements of the National Planning Policy Framework section 121, and compliant with the Building Regulations Part C, *'Site preparation and resistance to contaminants and moisture.*

10

Effects of ground conditions on building materials

- 10.1 General
- 10.2 Reference documents
- 10.3 Hazard identification and assessment
- 10.4 Provision of test data to specifiers/manufacturers/installers
- 10.5 Risk assessments for individual building materials
- 10.6 Concrete general mechanisms of attack
- 10.7 Concrete sulphate attack
- 10.8 Concrete chloride attack
- 10.9 Concrete acid attack
- 10.10 Concrete magnesium attack
- 10.11 Concrete ammonium attack
- 10.12 Concrete blocks
- 10.13 Clay bricks/pipes
- 10.14 Mortar
- 10.15 Metals general
- 10.16 Metals cast iron
- 10.17 Metals steel piles
- 10.18 Metals stainless steel
- 10.19 Metals galvanised steel
- 10.20 Metals copper
- 10.21 Metals lead
- 10.22 Plastics general
- 10.23 Plastic membranes and geotextiles
- 10.24 Plastic pipes
- 10.25 Electrical cables
- 10.26 Rubbers

10.1 General

- 10.1.1 Building materials are often subjected to aggressive environments which cause them to undergo chemical or physical changes. These changes may result in loss of strength or other properties that may put at risk their structure integrity or ability to perform to design requirements. Aggressive conditions include:-
 - Severe climates
 - Coastal conditions
 - Polluted atmospheres
 - Aggressive ground conditions

This report section only considers aggressive ground conditions, with other items considered outside our brief and scope of investigations.

- 10.1.2 In aggressive ground conditions, the potential for contaminant attack depends on the following:-
 - The presence of water as a carrier of chemical contaminants, (except free phase organic contamination)
 - The availability of the contaminant in terms of solubility, concentration and replenishment rate
 - Contact between the contaminant and the building material
 - The nature of the building materials and its capability of being attacked by contaminants

In general the thicker the building material the less likelihood there is for contaminant attack to cause damage to the integrity of the structure.

10.2 Reference documents

- 10.2.1 Following the Environment Agency publication 'Model Procedures for the Management of Land Contamination' (Contaminated Land Report 11) the following documents have been referred to in production of the following report paragraphs.
 - '*Performance of Building Materials in Contaminated Land*' report BR255 (Building Research Establishment 1994).
 - 'Risks of Contaminated Land to Buildings, Building Materials and Services. A Literature Review' Technical Report P331 (Environment Agency 2000).
 - 'Guidance on assessing and managing risks to buildings from land contamination' Technical Report P5 035/TR/01).
 - Building Regulations Approved document C site preparation and resistance to contaminants and moisture (Office of the Deputy Prime Minister, 2004).
 - 'Concrete in aggressive ground' Special Digest 1: 2005 (Building Research Establishment).

10.3 Hazard identification and assessment

- 10.3.1 The identification of hazards is based on the findings of this investigation primarily relating to former land uses (potential for chemical contamination, and likely type of contamination) and laboratory determination of concentration of chemical contaminants. Clearly, the scope of laboratory testing is determined with respect to former land uses, contaminants which may cause harm to human health and water resources.
- 10.3.2 Based on the above, the scope of our testing regime is described in Sections 8. We have utilised this test data in production of the following risk assessments in relation to building materials, in conjunction with test data targeting the effects of chemical attack on concrete in contact with the ground, as described in BRE Special Digest 1.

- 10.3.3 The identification of hazards from contamination and subsequent assessment of risks is based on the following:-
 - The contaminants present on site.
 - The nature of the contaminant (i.e. calcium sulphate is much less soluble than sodium or magnesium sulphate and is, therefore, less of a concern with regards sulphate attack).
 - The concentration of contaminants in general the higher the concentration the greater the hazard.
 - The solubility of the contaminants contaminants which are not soluble will not generally react with materials.
 - The permeability of the soils i.e. case by which fluids can transport contaminants to the building.
- 10.3.4 The process of risk assessment for building materials is concerned with identification of the hazard (contaminants at the site a source) and subsequently how the contaminants can reach the building (pathway) and how they can react with the building (receptor). Thus the risk assessment is produced based on the source pathway receptor model.

10.4 Provision of test data to specifiers/manufacturer/installer

10.4.1 The following risk assessments are based on current published data. We strongly recommend, however, that information gained from this investigation are provided to specifiers/manufacturers/installers of building materials/service ducts/apparatus who may have more up to date research to confirm the ability of the product to resist the effects of chemical contaminants at the site for the desired lifespan of the product.

10.5 Risks assessments for individual building materials

10.5.1 The following/typical sections contain risk assessments for various building materials likely to be incorporated in developments. Other materials which we are not aware of may also be used in developments and in contact with the ground and, therefore, recommend the suppliers are consulted with respect to ground conditions at this site and their opinion sought as to the ability of the product to resist chemical conditions determined at the site.

10.6 Concrete - General mechanisms of attack

- 10.6.1 There are a number of mechanisms by which contaminants attack concrete including the following:-
 - Hydrolysis of the hardened concrete.
 - Degradation as a result of exchange reactions between calcium in calcium hydroxide (free lime hydrate) and ions in aggressive solutions.
 - Expansive reactions as a result of chemical reaction or salt crystallisation.

10.7 Concrete - Sulphate attack

10.7.1 Hazard

- 10.7.1.1 Sulphate attack on concrete is characterised by expansion, leading to loss of strength, cracking, spalling and eventual disintegration. There are three principal forms of sulphate attack, as follows:-
 - Formation of gypsum through reaction of calcium hydroxide and sulphate ions.
 - Ettringite formation through reaction of tricalcium alluminate and sulphite irons.
 - Thaumasite formation as a result of reactions between calcium silicate hydrates, carbonate ions (from aggregates) and sulphate ions.

10.7.2 Assessment

10.7.2.1 The hazard of sulphide attack is addressed by reference to procedures described in Building Research Establishment (BRE) Special Digest 1: 2005 '*Concrete in Aggressive Ground*' to establish a design sulphate class (DS) and the '*aggressive Chemical Environment for Concrete*' (ACEC). These procedures have been followed during our investigation and are described in the following paragraphs.

10.7.3 Desk Study Information

10.7.3.1 The first step in the procedure is to consider specific elements of the desk study. These are tabulated below.

Summary of desk study information					
Element	Interrogation	Outcome	SD1: 2005		
			reference		
Geology	Likelihood of soils containing pyrites	Unlikely	Box C6		
Past industrial uses	Brownfield site?	No	C2.1.2		
Table 10.7					

- 10.7.3.2 A brownfield site is defined in SD1: 2005 as a site, or part of a site which has been subject to industrial development, storage of chemicals (including for agricultural use) or deposition of waste, and which may contain aggressive chemicals in residual surface materials, or in ground penetrated by leachates. Where the history of the site is not known, it should be treated as brownfield until there is evidence to classify it as natural.
- 10.7.3.3 Based on the above it is necessary to follow the procedures described in figure C4 (*'natural ground sites except where soils may contain pyrite'*).

10.7.4 Assessment of Design Sulphate Class

10.7.4.1 The sulphate concentration in a 2:1 water/soil extract was measured in one sample of Made Ground and three samples of the Watcombe Breccia Formation. The highest test result has been calculated as the characteristic value (refer to table 10.7.4). The measured values are not considered to be significantly variable.

- 10.7.4.2 Alluvium at the site is considered to be Watcombe Breccia Formation derived and, in our opinion, test values from samples of the Watcombe Breccia Formation are directly applicable to the Alluvium deposits and no further consideration or testing is necessary.
- 10.7.4.1 The sulphate concentration (mg/l SO₄) was measured on one groundwater samples obtained from the Watcombe Breccia Formation. The highest determined value has been calculated as the characteristic value (refer to table 10.7.7).

10.7.5 Assessment of groundwater mobility

10.7.5.1 With reference to SD1: 2005, Section C3.2, we are of the opinion that ground and site characteristics suggest 'mobile groundwater' conditions.

10.7.6 Assessment of pH

- 10.7.5.1 Following SD1: 2005, Section C5.1.1 (step 4) only a 'small number' of samples have been tested and thus the characteristic value for pH within Made Ground and Watcombe Breccia Formation equates to the lowest measured values of 6.5 and 6.5 respectively.
- 10.7.4.1 Following SD1: 2005, Section C5.1.1 (step 4) the characteristic value for pH with groundwater at the site is 7.5.

10.7.7 Assessment of aggressive chemical environment for concrete (ACEC)

10.7.7.1 Based on the design sulphate class, characteristic value of pH and assessment of groundwater mobility, and with reference to table C1 of SDI: 2005, the ACEC class for each soil type is presented in Table 10.7.7 below.

Summary of concrete classification							
Soil type	No. of samples	Characteristic pH	Groundwater mobility	Characteristic TPS	Characteristic sulphate (mg/l)	DS class	ACEC class
Made ground	1	6.5	Mobile	N/A	10	DS-1	AC-1
Watcombe Breccia Formation	3	6.5	Mobile	N/A	10	DS-1	AC-1
Groundwater samples	1	7.5	N/A	N/A	24	DS-1	AC-1
Table reference	e 10.7.7						

10.8 Concrete - Chloride attack

10.8.1 Hazards

10.8.1.1 There are a number of ways in which chlorides can react with hydrated cement compounds in concrete. These are as follows:-

- Chlorides react with calcium hydroxide in the cement binder to form soluble calcium chloride. This reaction increases the permeability of the concrete reducing its durability.
- Calcium and magnesium chlorides can react with calcium aluminate hydrates to form chloroaluminates which result in low to medium expansion of the concrete.
- If concrete is subject to wetting and drying cycles caused by groundwater fluctuations, salt crystallisation can form in concrete pores. If pressure produced by crystal growth is greater than the tensile strength of the concrete, the concrete will crack and eventually disintegrate.

10.8.2 Risk assessment

- 10.8.2.1 Chlorides of sodium, potassium, and calcium are generally regarded as being nonaggressive towards mass concrete; indeed brine containers used in salt mines have been known to be serviceable after 20 years service. Depending upon the type of concrete, and the cement used up to 0.4% chloride is allowed in BS8110: Part 1.
- 10.8.2.2 In view of the past use of the site we consider the likelihood of elevated concentrations of chlorides in the ground is not likely to occur and on this basis have not specifically measured concentrations of chlorides and, in our opinion, the risk of buried concrete being affected by chlorides is considered low.

10.9 Concrete - Acid attack

10.9.1 Hazards

10.9.1.1 Concrete being an alkaline material is vulnerable to attack by acids. Prolonged exposure of concrete structures to acidic solutions can result in complete disintegration.

10.9.2 Risk assessment

- 10.9.2.1 The rate of acid attack on concrete depends upon the following:-
 - The type of acid
 - The acid concentration (pH)
 - The composition of the concrete (cement/aggregate)
 - The soil permeability
 - Groundwater movement

British Standard BS8110: Part 1 classifies extreme environment as one where concrete is exposed to flowing groundwater that has a pH<4.5. The standard also warns that Portland Cement is not suitable for acidic conditions with a pH of 5.5 or lower.

10.9.2.2 The pH of the soil/groundwater was measured exceeding 5.5 and on this basis the risk of concrete being affected by acidic conditions is considered low.

10.10 Concrete - Magnesium attack

10.10.1 Hazards

10.10.1.1 Magnesium salts (excepting magnesium hydrogen carbonate) are destructive to concrete. Corrosion of concrete occurs from cation exchange reactions where calcium in the cement paste hydrates and is replaced with magnesium. The cement looses binding power and eventually the concrete disintegrates.

10.10.2 Risk assessment

- 10.10.2.1 In practise 'high' concentrations of magnesium will be found in the UK only in ground having industrial residues. Following BRE Special Digest 1:2005, measurement of the concentration of magnesium is recommended if sulphate concentrations in water extract or groundwater exceed 3000mg/l. Once measured the concentration of magnesium is considered further in BRE Special Digest in establishing the concrete mix to resist chemical attack.
- 10.10.2.2 Sulphate concentrations did not exceed 3000mg/l
- 10.10.2.4 We have measured the concentration of magnesium in a groundwater sample at the site which produced a results of 2.8mg/l. In addition, the site has no history which provides evidence of the uses of magnesium on site, and in overall conclusion the risk of concrete being affected by magnesium is considered low.

10.11 Concrete - Ammonium attack

10.11.1 Hazards

10.11.1.1 Ammonium salts, like magnesium salts act as weak acids and attack hardened concrete paste resulting in softening and gradual decrease in strength of the concrete.

10.11.2 Risk assessment

- 10.11.2.1 UK guidance is not available on the concentration of ammonium which may affect concrete. BS EN 206-1: 2000 '*Concrete Part 1: Specification, performance, production and conformity*' does, however, provide exposure classes for concrete in contact with water with varying concentrations of ammonia for the design/specification for concrete mixes.
- 10.11.2.2 We have measured the concentration of ammonia in a groundwater sample at the site, and there is a potential possibility that concrete for the building may be in contact with groundwater during its life. The concentration of ammonia was measured at 0.43mg/l. In addition, the site has no history which provides evidence of the uses of ammonia on site, and in overall conclusion the risk of concrete being affected by ammonia is considered low.

10.12 Concrete blocks

10.12.1 Hazards

10.12.1.1 Precast aggregate concrete blocks and autoclaved aerated concrete blocks are commonly used in the construction of shallow foundations. Concrete blocks are potentially attacked by the same contaminants and ground conditions which affect dense concrete.

10.12.2 Risk Assessment

10.12.2.1 In general, the mechanism of attack on concrete blocks is the same for hardened concrete. We recommend parameters for ground conditions for concrete described in the preceding paragraphs for concrete blockwork in contact with the ground/groundwater and the blockwork manufacturers confirmation sought for applicability of their product.

10.13 Clay Bricks/Pipes

10.13.1 Clay Bricks are highly durable materials which have been used in buildings for many centuries. Fire clay pipe material can also be considered similarly resistant to contaminants.

10.13.2 Hazards

- 10.13.2.1 Dissolution of clay brick in a potentially serious cause of deterioration. The extent of dissolution depends upon the solubility of the glassy material (produced by firing of the clay) contained in the brick. The acidic nature of the glass phase will produce low solubility in a neutral and acidic environment, but can be soluble in a basic environment.
- 10.13.2.2 A potentially more serious hazard for brickwork is the crystallisation of soluble salts within the brick pore structure. Salts are transported by water to the interior of the brick originating from the external environment or by rehydration, however, are only likely to occur when there is a gradient from a wet interior to a drying surface. The potential, therefore, for salt crystallisation in the ground is, therefore, low.

10.13.3 Risk Assessment

10.13.3.1 There seems to be little published information as regards the resistance to clay bricks/pipes in aggressive ground conditions, however, clay bricks are generally considered very durable. We recommend manufacturers' advices are sought with respect to their resistance to ground conditions encountered at this site. **OR** As no significant concentrations of chemical contaminants have been identified at this site in combination with near neutral pH conditions it is considered unlikely that ground conditions are sufficiently aggressive to cause damage to brickwork/clay pipes.

10.13.3.2 Some basic guidance is provided in BS5628-3: 2005 '*Code of Practice for the Use of Masonry - Part 3: Materials and components, design and workmanship*' with regards to resistance of masonry to resist the effects of sulphate attack.

10.14 Mortar

10.14.1 Mortars are based on building sands mixed with cement and/or lime as a binder. In the UK Portland cements and masonry cement are commonly used. Masonry cements are a mixture of Portland Cements and fine mineral filler (i.e. Limestone) with an air entraining agent.

10.14.2 Hazards

10.14.2.1 Mortar is subject to the same agents for deterioration as concrete with the major cause of deterioration being sulphate attack.

10.14.3 Risk assessment

- 10.14.3.1 Sulphates can originate from soils/groundwater or from the bricks themselves. Calcium, magnesium, sodium and potassium sulphates are present in almost all firedclay bricks. Water can dissolve a fraction of these sulphates and transport them to the mortar.
- 10.14.3.2 Currently, we are not aware of any guidance on the resistance of mortars to sulphate attack. The Building Research Establishment report that the sulphate resistance of mortar was improved by the use of sulphate resisting Portland cements and lime. Some guidance is also provided in BS5628-3: 2005 'Code of Practice for the use of Masonry Part 3: Materials and components, design and workmanship'.
- 10.14.3.2 Based on ground conditions determined at the site the risk of significant sulphate attack on mortars (Based on testing/analysis of sulphates in relation to concrete refer Section 10.7) is considered low.

10.15 Metals - general

- 10.15.1 There are a number of metals which are used in buildings either as piles, services, non structural and, indeed, structural components. The most common metals used in buildings are steel, stainless steel, copper, lead, zinc, aluminium and cast iron. All these metals can deteriorate through corrosion process. Corrosion can affect metals in a variety of ways depending upon the nature of the metal and the environment to which it is subjected. In most common forms of corrosion are:-
 - Electrochemical the most common form of corrosion in an aqueous solution
 - Chemical corrosion occurs when there is a direct charge transfer between the metal and the attacking medium (examples are oxidation, attack by acids, alkalis and organic solvents)
 - Microbial induced corrosion

10.16 Metals - Cast iron

10.16.1 Cast iron is a term to describe ferrous metals containing more than 1.7% carbon and is used extensively in the manufacture of pipes.

10.16.2 Hazards

- 10.16.2.1 Generally, cast iron has a good resistance to corrosion by soils, however, corrosion can occur due to the following mechanisms:-
 - 1) Generation of large scale galvanic cells caused by differences in salt concentrations, oxygen availability or presence of stray electrical currents.
 - 2) Hydrochloric acid will cause corrosion at any concentration and temperature. Dilute sulphuric, nitric and phosphoric acids are also aggressive as also are well aerated organic acids.

10.16.3 Risk assessment

- 10.16.3.1 Testing can be carried out on site to measure the resistivity and redox potential of soils which can assist in deriving recommendations for protection of cast iron components using coatings, burial trenches, or isolation techniques. Currently, however, there is no specific guidance and we recommend advice is sought from manufacturers.
- 10.16.3.2 Guidelines produced by the Water Research Centre (WRc) on the use of ductile iron pipes, state that highly acidic soils (pH <5) are corrosive to cast iron pipe even when protected by a zinc coating or polythene sleeving. WRc also indicate that groundwater containing >300ppm chloride may corrode even protected cast iron pipes.
- 10.16.3.3 On the basis that the pH of soils at the site are not less than 5, and groundwater is unlikely to be in contact with cast iron elements, then the risk of ductile cast iron pipes being affected by acid/chloride attack is considered low. We have not carried out any redox/resistivity testing (considered outside our brief) and thus we cannot comment further with regards to the risks of galvanic action.

10.17 Metals - Steel piles

10.17.1 Hazards

10.17.1.1 The corrosion of steel requires the presence of both oxygen and water. In undisturbed natural soils the amount of corrosion of driven steel piles is generally small. In disturbed soils (made ground) however, corrosion rates can be high and normally twice as high as those for undisturbed natural soils.

10.17.2Risk Assessment

10.17.2.1 Guidance on the use of steel piles in different environments is provided in British Steel's piling handbook which includes calculating the effective life of steel piles. There is no specific guidance, however, for contaminated soils in this publication. Coatings can be provided to the pile surface but experience has shown that some coatings can be damaged during driving, particularly in ground which can contain hard materials such as brick/concrete/stone.

10.18 Metals - Stainless steel

10.18.1 Hazards

10.18.1.1 Stainless steel is used in a number of building components including services, pipework, reinforcement bars and wall ties. There is little knowledge, however, of the performance of stainless steel in aggressive environments.

10.18.2 Risk assessment

- 10.18.2.1 Stainless steel can withstand pH of 6.5 to 8.5, but the chlorine content of a soil increases the risk of corrosion. At concentrations of 200mg/l type 304 stainless steel can be used, but for concentrations of 200 to 1000mg/l type 316 should be used in preference to type 304, but for concentrations greater than 1000mg/l type 316 should always be used.
- 10.18.2.2 At this site the pH of the soils was near neutral (within the range of 6.5 to 8.5) and it is considered unlikely that groundwater will be in contact with stainless steel components (unless we are advised otherwise) thus the risk of ground conditions at the site affecting stainless steel is considered low.

10.19 Metals - Galvanised steel

10.19.1 Hazards

10.19.1.1 Galvanising steel is a means of protecting steel from aggressive environments; however, zinc galvanising can be corroded by salts and acids.

10.19.2 Risk assessment/remedial action

10.19.2.1 There is no current specific guidance on the effects of aggressive ground conditions on galvanised steel, however, some research indicates zinc alloys are generally more resistant than pure zinc coatings in aggressive conditions.

10.20 Metals - Copper

10.20.1 Hazards

10.20.1.1 Copper is commonly used for gas and water supplies. Copper is generally resistant to corrosion in most natural environments, but in contaminated ground copper can be subject to corrosion by acids, sulphates, chlorides and ground containing cinders/ash. Wet peat (pH 4.6) and acid clays (pH 4.2) are considered aggressive conditions to promote corrosion to copper.

10.20.2 Risk assessment

- 10.20.2.1 There is no specific published guidance on what constitutes aggressive conditions to copper except very acid/peaty conditions.
- 10.20.2.2 There are no significantly acidic or peaty conditions in near surface soils at the site or, indeed, significant concentrations of ash/cinders. On this basis the risk of significant corrosion to copper in contact with the ground is considered low.

10.21 Metals - Lead

10.21.1 Hazards

10.21.1.1 Lead is used in tanking, flashings, damp proof courses, etc. Lead is a durable material which is resistant to corrosion in most environments. Lead damp proof courses can be subject to attach from the lime released by Portland Cement based mortar and concrete. In the presence of moisture, a slow corrosive attack is initiated on lead sheet. In such cases a thick coat of bitumen should be used to protect the lead damp proof course.

10.21.2 Risk assessment

- 10.21.2.1 There is no current guidance on the performance of lead in contact with contaminated soils, however, acids and alkalis (lime) could be aggressive towards lead.
- 10.21.2.2 At the site pH conditions are not considered significantly extreme and this it is considered unlikely that ground conditions at the site would significantly affect lead.

10.22 Plastics - General

10.22.1 The range of plastics in construction is wide and increasing. The deterioration of plastics varies with the individual material and the environment to which it is exposed. In general, plastics deteriorate through degradation of their polymer constituent, but loss of plasticizer and other additives can render plastics ultimately unserviceable.

10.23 Plastic membranes and geotextiles

10.23.1 Plastic membranes and textiles are used in the construction industry as damp proof courses, gas resistant membranes, cover systems and liners. They are typically used to restrict the movement of gas or water into buildings, building materials or components or to separate differing soil types. Typically materials used for membranes are polyethylene (PE) and poly vinyl chloride (PVC).

10.23.2 Hazards

- 10.23.2.1 Membranes of PE and PVC are attacked by a variety of acids and solvents. PE has a poor corrosion resistance to oxidising acids (nitric and sulphuric) at high concentrations. Hydrochloric acid (HCl) does not chemically attack PE but can have a detrimental effect on its mechanical properties. Alkalis, basic salts, ammonia solutions and bleaching chemicals such as chlorine will cause deterioration of PE. PE is resistant to non oxidising salt solutions.
- 10.23.2.2 PVC is degraded by the action of oxidising acids. Nitric acid is particularly aggressive towards PVC. PVC does not deteriorate under the action of neutral or alkaline solutions.

10.23.3 Risk assessment

- 10.23.3.1 There is no published guidance on quantitative assessment of the risks to PE or PVC although there is a lot of advice on how contaminants react with these plastics. In general, the more concentrated the contamination the greater the risk to plastic membranes/geotextiles.
- 10.23.3.2 Based on the investigatory data obtained to date, and in consideration of the hazards described above, there is no evidence of significant concentrations of acids or alkalis, indicating the risks of ground conditions at the site affecting PE and PVC materials are considered low.

10.24 Plastic Pipes

10.24.1 Hazards

- 10.24.1.1 Plastic pipes are predominantly manufactured from PVC and PE but other materials can be used. In general they perform well but it is known that chemical attack and permeation of contaminants through the pipes can result from use in contaminated land. A published review on plastic pipes reports the following:-
 - Polyethylene (PE) good resistance to solvents, acids and alkalis
 - Poly vinyl chloride (PVC) most common form of pipe. Good general resistance to chemical attack but can be attacked by solvents such as ketones, chlorinated hydrocarbons and aromatic polypropylene (PP) - chemically resistant to acids, alkalis and organic solvents but not recommended for use with storing oxidising acids, chlorinated hydrocarbons and aromatics.

- Poly vinylidene fluoride (PVDF) inert to most solvents, acids and alkalis as well as chlorine, bromide and other halogens
- Polytetrafluoroethylene (PTFE) one of the most inert thermoplastics available. PTFE has good chemical resistance to solvents, acids and alkalis

A survey carried out by the Water Research Centre (WRc) on reported incidents of permeation (more than 25), only two involved PVC with these incidents relating to spillages of fuel.

10.24.2 Assessment

10.24.2.1 A survey carried out by the Water Research Centre (WRc) on reported incidents of permeation (more than 25), only two involved PVC with these incidents relating to spillages of fuel.

The UK Water Industry research (UKWIR) have published a document entitled 'Guidance for the selection of Water supply pipes to be used in Brownfield sites'. The publication defines brownfield sites as

'Land or premises that have been used or developed. They may also be vacant, or derelict. However they are not necessarily contaminated'

10.24.2.2 The subject site has not previously been developed and is not considered to be a brownfield site as defined by the UKWIR publication. In addition laboratory test data for polycyclic aromatic hydrocarbons produced no concentrations above detectable limits. Based on this evidence we are of the opinion that no special precautions are likely to be required for water supply pipe. We recommend South West Water is however consulted on this to gain their opinion and requirements

10.25 Electrical cables

10.25.1 Hazards

10.25.1.1 Electrical cables are generally protected by plastic sleeves. These sleeves are potentially subject to chemical and permeation in similar modes as plastic pipes. Medium and low voltage cables are often laid directly into the ground and are thus at risk of attack by contaminants. High voltage cables tend to be laid in trenches backfilled with 'clean' materials.

10.25.2 Risk assessment/remedial action

10.25.2.1 The selection of appropriate sheathing material is important to provide resistance to ground conditions at the site and recommend manufacturers' advices are sought.

10.26 Rubbers

10.26.1 Hazards

- 10.26.1.1 Rubbers are crosslinked polymeric materials containing a number of additives such as carbon black, fillers, antioxidant and vulcanising agents. The corrosion resistance of rubber is dependant upon the polymeric constituent. The mechanisms by which rubbers deteriorate when placed in aggressive chemical environments are similar to those described for plastics. Oxidation is the principal form of degradation. Whilst rubbers are resistant to strong acids and alkalis, they are rapidly attacked by oxidising agents such as nitric acid and oxidising salts such as copper, manganese and iron.
- 10.26.1.2 Rubber is also susceptible to attack by certain hydrocarbons and oils. The absorption of these liquids causes the rubber to smell.

10.26.2 Risk assessment/remedial action

- 10.26.2.1 Information on the effect of a range of chemicals on the physical properties of various rubbers has been produced by the Rubber and Plastics Research Association. This was based on observations carried out following immersion tests using undiluted chemicals, but this has limitations such as the effects of combined chemicals and the effects of dilution.
- 10.26.2.2 We recommend manufacturers of the rubber materials likely to be in contact with the ground at the site are consulted to confirm, or otherwise, the applicability of their product.

11 Classification of waste soils under the Waste Acceptance Criteria

- 11.1 The Landfill Directive
- 11.2 Classification of soil types
- 11.3 Waste Acceptance Criteria (WAC)
- 11.4 Primary Classification
- 11.5 Secondary Classification
- 11.6 Naturally deposited soils not affected by artificial contaminants
- 11.7 Basic Categorisation
- 11.8 Treatment of waste
- 11.9 Reuse of soils Materials Management Plans

11.1 The Landfill Directive

11.1.1 The Landfill Directive represents an important change in the way we dispose of waste. It encourages waste minimisation by promoting increased levels of recycling and recovery. The Landfill Directive became law in 1999 and transcribed into the Landfill (England and Wales) Regulations which came into force in 2002. These Regulations were amended in 2005 by introducing criteria to classify soils for disposal to landfill. It is the duty of the waste producer (the client) to classify the soils for this purpose.

11.2 Classification of soil types

11.2.1 Our investigations consider two soil types which may be generated as wastes as part of construction operations, potentially contaminated soil and uncontaminated soil. A full hazard assessment and subsequent testing for waste acceptance criteria is undertaken on soils which are not considered to be naturally deposited or are likely to be affected by artificial contamination. For soils that are unlikely to be affected by artificial contamination (such as natural soils), specific testing in relation to the classification process is not necessary.

11.3 Waste acceptance criteria (WAC)

11.3.1 The Environment Agency publication, *'Framework for the classification of contaminated soils as hazardous wastes'* (July 2004), provides an appropriate procedure for establishing if the soils are hazardous or non-hazardous and applies to soils that are identified as potentially contaminated. Uncontaminated, natural soils are considered separately (see Section 11.6).

11.3.2 Primary classification

- 11.3.2.1 The first stage is classifying a potentially 'contaminated' soil for disposal to landfill is to establish its chemical status by first identifying potential sources/types of chemical contamination (desk study) followed by intrusive site investigations to obtain samples for undefined testing of soil samples to measure concentrations of chemical contaminants. Such data provides information to partly complete the basic characteristic checklist.
- 11.3.2.2 Laboratory test data is then compared with the Environment Agency publication *'hazardous waste – Interpretation of the definition and classification of hazardous waste (second edition, version 2.1)'.* Where the waste is suspected to contain oil, we have referred to the Environment Agency draft consultation paper *'How to Find Out if Waste Oil and Wastes that Contain Oil are Hazardous'* (Draft Version 2.5 – October 2006). With reference to these documents a hazard assessment has been carried out to enable categorisation of the material as hazardous or non-hazardous and to subsequently establish the European Waste Catalogue (EWC) code (ref Section 11.3.4 below).

11.3.3 Secondary classification

- 11.3.3.1 If the soil is deemed hazardous then measurement of organic contaminants and leachable inorganic contaminants is necessary for comparison with values listed in the Environment Agency publication '*Guidance on sampling and testing of wastes to meet landfill waste acceptance procedures*' (April 2005) Table 5.1. Similarly should the soil be deemed as non-hazardous then such testing may also be undertaken to determine if it is potentially inert. This document also provides guidance on sampling materials and frequency as well as test procedures and quality assurance of testing.
- 11.3.3.2 The above procedures are described with respect to the subject site in the following sections Section 11.4 (primary) and 11.5 (secondary), leading to basic characterisation of soils for disposal. Subject to the results of the categorisation and anticipated development methodology, consideration should be given by the developer to reduce volumes of disposal or treatment to allow reclassification.

11.3.4 European waste catalogue (EWC) coding

- 11.3.4.1 The EWC 2002 is a catalogue of all wastes, grouped according to generic industry, process or waste type. It is divided into twenty main chapters, each with a two digit code between 01 and 20. Following the EWC, in our opinion, soils considered as part of this investigation would be categorised within 'Group 17' of the EWC catalogue, which comprises 'Construction and Demolition Wastes (including excavated soils from contaminated sites)'.
- 11.3.4.2 The Catalogue further categorises the waste, such that soils considered as part of this investigation would be classified as either 17 05 04 defined as *'soil and stones (other than those mentioned in 17 05 03)';* or 17 05 03* defined as soil or stones containing dangerous substances (where hazardous wastes are described by entries followed by an asterisk).

11.4 Primary classification

11.4.1 Soil types

11.4.1.1 Based on soils exposed in exploratory excavations, in combination with anticipated construction works, we assume soils requiring off-site disposal will comprise Made Ground, Alluvium and Watcombe Breccia Formation.

11.4.2 Classification as hazardous or non-hazardous waste

- 11.4.2.1 The Environment Agency publication 'Framework for the classification of contaminated soils as hazardous wastes' (July 2004) provides the following procedure for establishing if the soils are hazardous or non-hazardous. The first stage in classifying a potentially 'contaminated' soil for disposal is to establish its chemical status by first identifying potential sources/types of chemical contamination (desk study) followed by intrusive site investigations to obtain samples for laboratory testing of soil samples to measure concentrations of chemical contaminants.
- 11.4.2.2 An assessment of potential source of contamination is presented in Section 8 of this report. Laboratory testing has been set as deemed appropriate to our source assessment.
- 11.4.2.3 We have carried out an analysis of test data for each chemical contaminant considered in this investigation. A conservative approach has been adopted for the analysis whereby the maximum test value for each contaminant has been adopted as a preliminary screening process to determine if the soils are hazardous or nonhazardous. Should the analysis indicate potentially hazardous properties then a process of zoning by further analysing the site history, geological conditions and analytical data may be undertaken.
- 11.4.2.4 Laboratory test data measures the concentration of anions, which are unlikely to exist in the pure metallic form in the soil, but probably exist as a compound. Following guidance provided in the Environment Agency Technical Guidance WM3 '*Guidance on the classification and assessment of waste*' (2015), we have reviewed a variety of compounds for each of the metallic and semi metallic elements we have tested.
- 11.4.2.5 To determine the hazardous waste properties for each element, we have reviewed chemical compounds listed in Table 3.2 of Annex VI of the European Regulation (1272/2008) for Classification, Labelling and Packaging (CLP) of chemicals which has now superseded the Approved Supply List (Published by the Health and Safety Executive) for the classification of hazardous chemicals in the UK. In order to provide a 'worst case' scenario, initially we adopt the most severe hazardous properties (risk phrases) associated with the various compounds for each element under review. If measured concentrations produce a hazardous outcome then the element or elements are reassessed on a site specific basis. For review of organic contamination, we have directly adopted the threshold concentrations for the appropriate organic compounds listed in Table 3.2.

- 11.4.2.6 The compound or compounds adopted for each element is used to convert the measured metallic concentration to the substance concentration using their respective molecular weights. This derived conversion factor is then used in the threshold concentration spreadsheet (refer paragraph 11.3.2.8 below).
- 11.4.2.7 Our assessment of each of the chemical substances is maintained on our files and is available for confidential review/audit by the Environment Agency.
- 11.4.2.8 A spreadsheet detailing the hazard assessment following the procedures described in *'framework for the classification of contaminated soils as hazardous wastes'* is presented in Appendix K.
- 11.4.2.9 The spreadsheet indicates the soils are **non-hazardous**.

11.5 Secondary assessment

11.5.1 Following 'Guidance on sampling and testing of wastes to meet landfill waste acceptance procedures' produced by the Environment Agency (Version 1, April 2005) we have scheduled testing of **one** sample to measure the parameters listed in table 5.1 (landfill waste acceptance criteria) included in the above publication. A copy of the test result certificate is presented in Appendix G. The source of the composite sample(s) is detailed below:

Strata	Source	Soil Type
Made Ground	TP09 – 0.2m Re TP05 – 0.2m ve TP02 – 0.2m Gr	Red brown gravelly clayey to
	TP05 – 0.2m	very clayey fine to medium sand
	TP02 – 0.2m	Gravel consists of fine to
	TP01-0.1m	medium sub-angular sandstone,
	TP06 – 0.7m	breccia and frequent quartz,
	TP06 – 0.3m	limestone, brick, china and
	TP13 – 0.3m	plastic.

- 11.5.2 The sample was deemed representative of Made Ground soils as described in Section
 5. The sample was formed by combining individual samples taken from exploratory excavations within the Made Ground. The combined sample was then quartered in the laboratory to produce a representative sample for subsequent testing.
- 11.5.3 Laboratory test data has been compared with the landfill waste acceptable criteria (table 5.1) to allow the secondary assessment to be completed. A copy of table 5.1 is presented in Appendix F with test result data added for ease of comparison.
- 11.5.4 Comparison of test data with landfill waste acceptance criteria indicates that Made Ground soils are suitable for disposal as **inert waste**.

11.6 Naturally deposited soils not affected by artificial contaminants

11.6.1 With reference to the European Waste Catalogue and table 5.1 of the Environment Agency publication 'a better place – guidance for waste destined for disposal in landfills – version 2 June 2006', naturally occurring soils not likely to be affected by contamination can be classified as inert waste, with a EWC code of 17 05 04. Should any of the naturally deposited soils be suspected to contain contamination (by virtue of visual of olfactory evidence) upon excavation, then such soils should be stockpiled appropriately and additional testing carried out as considered necessary. Based on evidence obtained during our investigations, we are of the opinion that the Watcombe Breccia Formation and Alluvium deposits at the site are not likely to be affected by chemical contamination and thus can be classified as **inert waste**.

11.7 Basic categorisation

- 11.7.1 Based on the preceding assessment, we have produced three basic categorisation schedules relating to the Made Ground, Alluvium and Watcombe Breccia Formation deposits, which are presented in Appendix M. This schedule should be provided together with a copy of this report to an appropriately licensed landfill facility to demonstrate the material can be deposited at this facility.
- 11.7.2 We understand that some landfill sites have licences which have restrictions on concentrations of chemical contaminants and thus we recommend this report is provided to the selected landfill facility to confirm (or otherwise) it can accept the waste. Please be aware that landfill sites are obligated to undertake in house quality assurance tests and thus may require further WAC testing for any soils encountered as part of this investigation. There is no obligation on any landfill operator to accept waste if they choose not to and waste operators may require additional testing of untested waste soils prior to acceptance at landfill in accordance with the landfill regulations.

11.8 Treatment of waste

- 11.8.1 Treatment of wastes is now a requirement of the landfill directive applied by the Landfill (England and Wales) Regulations 2002. Landfill cannot accept untreated waste (be it hazardous or non-hazardous), thus waste producers have the choice of treating it themselves on site or treating it elsewhere prior to disposal to landfill. The regulations require:
 - '10 (1) The operator of a landfill shall ensure that the landfill is only used for landfilling waste which is subject to prior treatment unless:
 - a) It is inert waste for which treatment is not technically feasible; or
 - b) It is waste other than inert waste and treatment would not reduce its quantity or the hazards which it poses to human health or the environment.'

- 11.8.2 Regulation 2 defines treatment as: 'physical, thermal, chemical or biological processes (including sorting) that change the characteristics of waste in order to reduce its volume or hazardous nature, facilitate its handling or enhance recovery.'
- 11.8.3 A treatment option must comply with the definition of treatment. This involves a 'three point test' against which treatment is assessed i.e.
 - 1. It must be a physical, thermal, chemical or biological process including sorting
 - 2. It must change the characteristics of the waste: and
 - 3. It must do so in order to:
 - a) Reduce its volume: or
 - b) Reduce its hazardous nature: or
 - c) Facilitate its handling: or
 - d) Enhance its recovery.

11.8.4 Treatment of inert wastes

- 11.8.4.1 Inert waste does not need to be treated if it is not technically feasible however treatment should reduce the amount of waste which goes to landfill and enhance its recovery (by re-use or recycling). Inert wastes are often suitable for recycling, for example as an aggregate or an engineering fill material. A fact sheet on treatment of inert wastes is available on the following website <u>www.environment-agency.gov.uk</u>
- 11.8.4.2 Clearly, excavations in the Alluvium and Watcombe Breccia Formation will generate inert wastes which could be reused on site or off site for bulk filling, subject of course to maintenance of an acceptable water content and provided that it is fit for its intended purpose.

11.8.5 Treatment of non-hazardous waste

11.8.5.1 Guidance and indeed examples of treatment is provided in the Environment Agency publication '*Treatment of non-hazardous wastes for landfill* - your waste - your responsibility,' again available on the EA website.

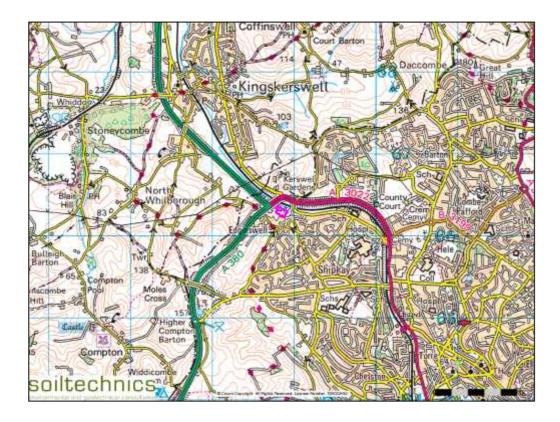
11.9 Reuse of Soils - Materials Management Plans

- 11.9.1 Where soils are to be moved and reused onsite, or are to be imported to the site, a Waste Exemption or an Environmental Permit is required.
- 11.9.2 An alternative is the use of a Materials Management Plan (MMP) to determine where soils are and are not considered to be a waste. By following '*The Definition of Waste: Development Industry Code of Practice*' published by CL:AIRE (produced in 2008 and revised in March 2011), soils that are suitable for reuse without the need for remediation (either chemical or geotechnical) and have a certainty of use, are not considered to be waste and therefore do not fall under waste regulations. In addition, following this guidance may present an opportunity to transfer suitable material between sites, without the need for Waste Exemptions or Environmental Permits.

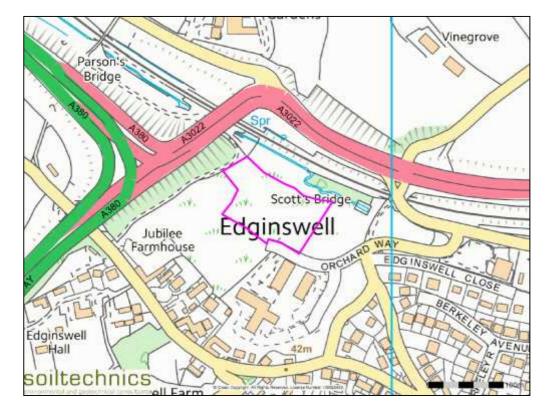
- 11.9.3 MMPs offering numerous benefits, including maximising the use of soils onsite, minimising soils going to landfill and reducing costs and time involved in liaising with waste regulators.
- 11.9.4 We can provide further advice on this and provide fees for producing a Materials Management Plan on further instructions.

12 Further investigations

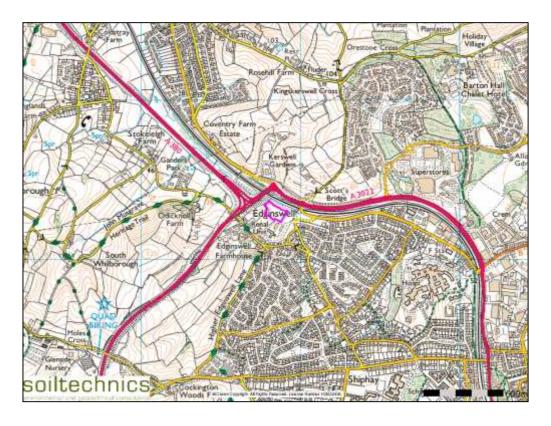
12.1 Further investigations


12.1 Although we have endeavoured to provide a comprehensive investigation for the proposed development within budgetary constraints there are areas, which we recommend further investigations be carried out. These are as follows:

- Review cut and fill exercise with respect to ground conditions encountered
- Determine groundwater levels and flow (inflow) rates
- Determine the depth to rock head in the location of the retaining wall
- Investigate the stability of near surface soils
- Earthworks specification
- 12.2 We would be pleased to carry out any of the supplementary investigations described above and provide proposals with costings on further instructions.


soiltechnics environmental and geotechnical consultants

13 Remediation strategy and specification

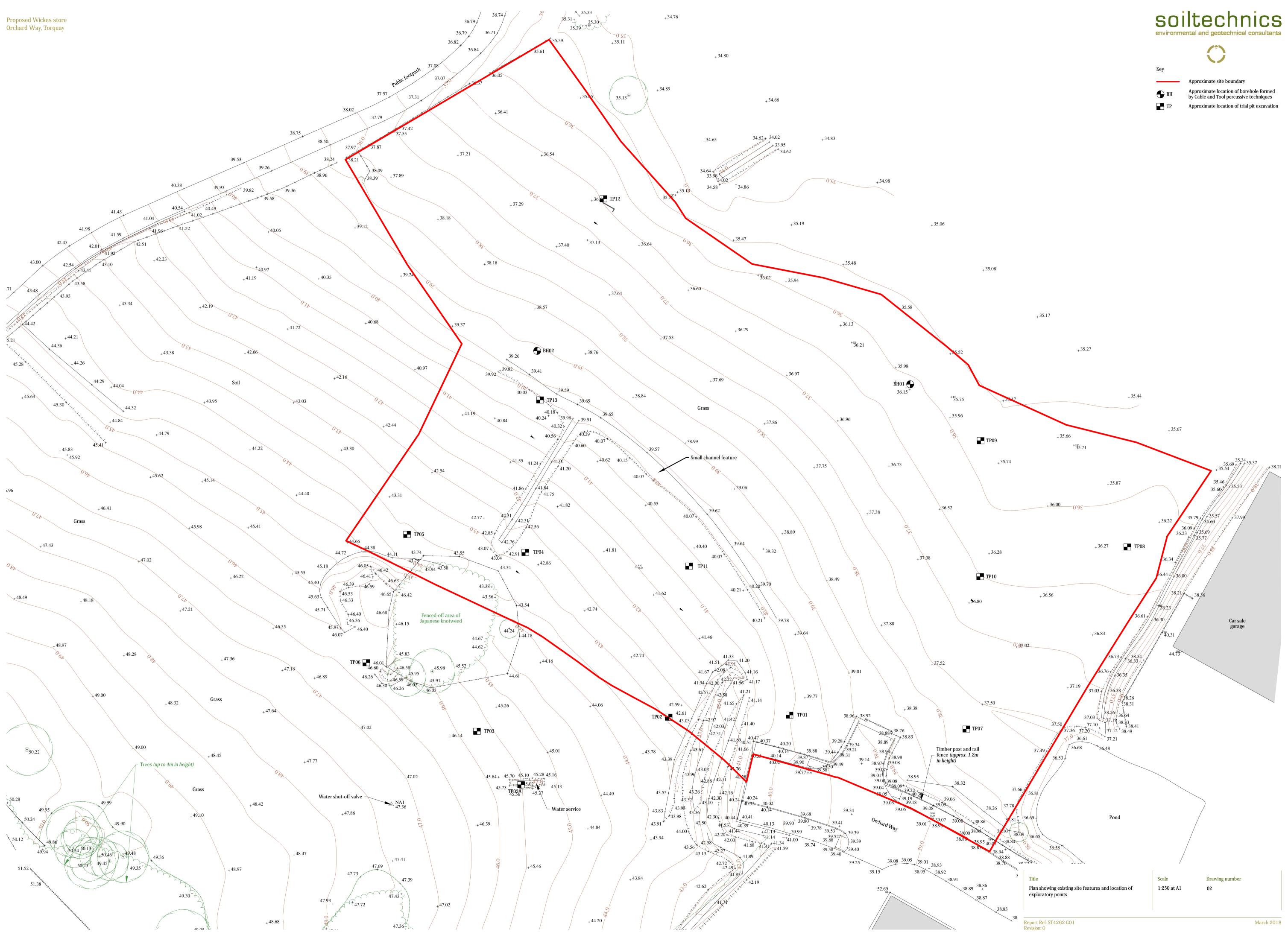

13.1 Based on the outcome of chemical and gaseous contamination risk assessments, remedial measures to render the site suitable for use are not required.

Neighbourhood extract from Ordnance Survey map

Detail extract from Ordnance Survey map

Town extract from Ordnance Survey map

Title
Site location plan

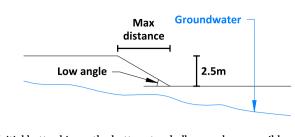

Report ref: STP4262-GO1 Revision O

Scale Not

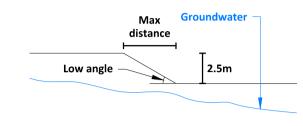
soiltechnics environmental and geotechnical consultants

	Drawing number	
to scale	01	_

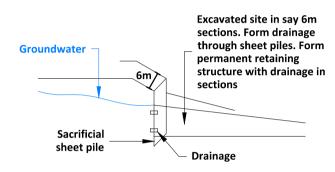
March 2018



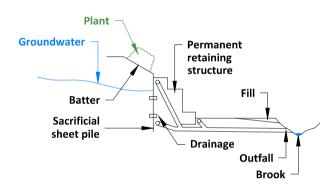
	Approximate site boundary
🕒 вн	Approximate location of borehole formed by Cable and Tool percussive techniques
TP	Approximate location of trial pit excavation

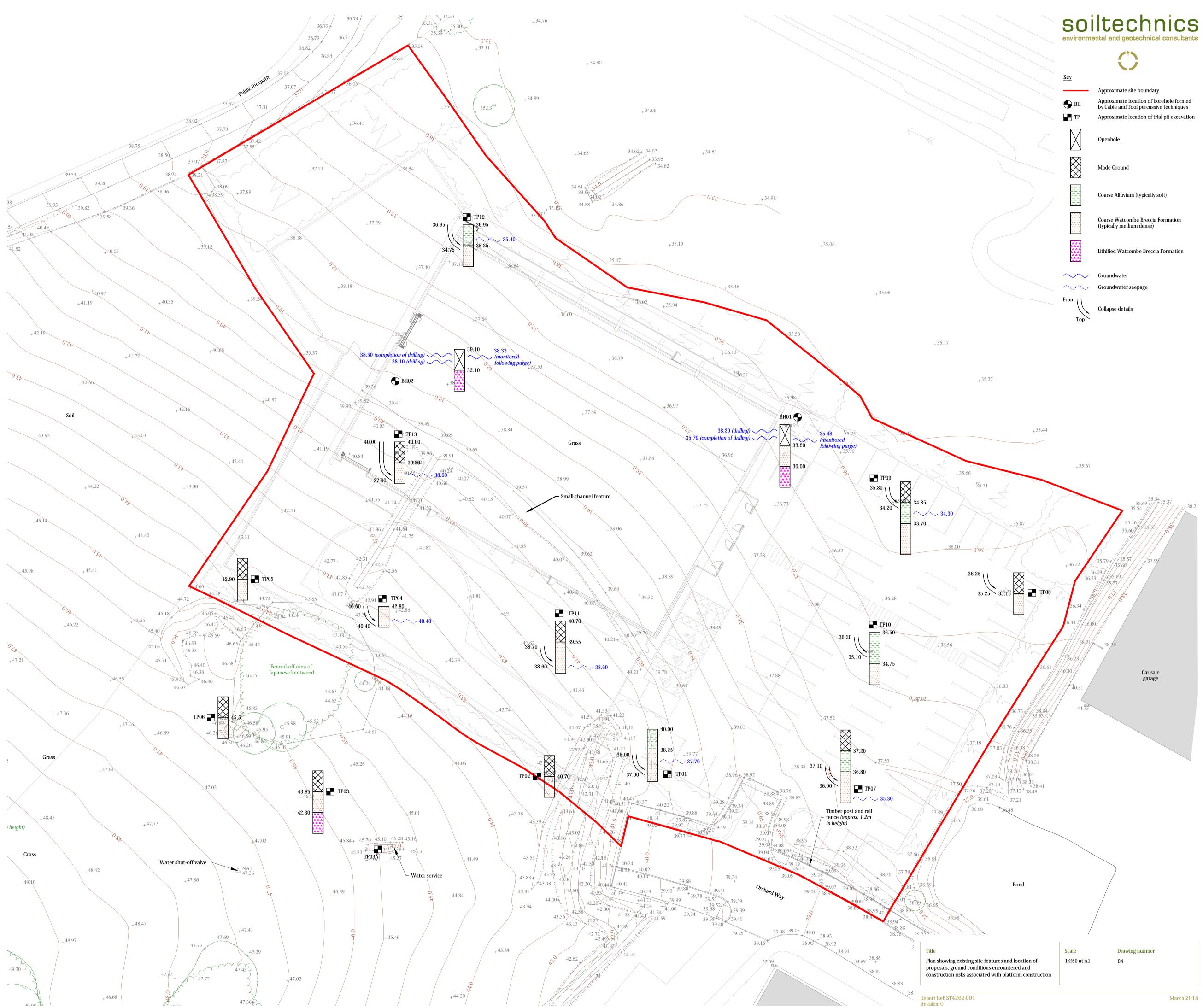


Possible construction sequence 1


Initial batter bigger the better at a shallow angle as possible upslope to maintain stability. Recommend test excavation ???? by say 2.5m)

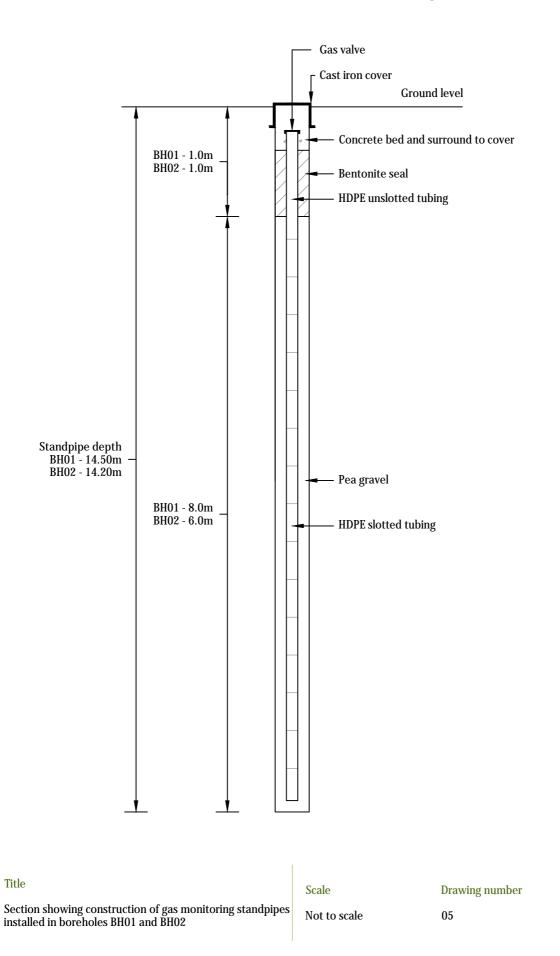
Possible construction sequence 2




Embed sacrificed sheet pile onto rock. Possible grout to control groundwater.

Possible construction sequence 3

Possible construction sequence 4



environmental and geotechnical consultants

Definition of geotechnical terms used in this report - foundations

Strip foundations.

A foundation providing a continuous longitudinal ground bearing.

Trench fill concrete foundation.

A trench filled with mass concrete providing continuous longitudinal ground bearing.

Pad foundation.

An isolated foundation to spread a concentrated load.

Raft foundation.

A foundation continuous in two directions, usually covering an area equal to or greater than the base area of the structure.

Substructure.

That part of any structure (including building, road, runway or earthwork) which is below natural or artificial ground level. In a bridge this includes piers and abutments (and wing walls), whether below ground level or not, which support the superstructure.

Piled foundations and end bearing piles. A pile driven or formed in the ground for transmitting the weight of a structure to the soil by the resistance developed at the pile point or base and the friction along its surface. If the pile supports the load mainly by the resistance developed at its point or base, it is referred to as an end-bearing pile; if mainly by friction along its surface, as a friction pile.

Bored cast in place pile.

A pile formed with or without a casing by excavating or boring a hole in the ground and subsequently filling it with plain or reinforced concrete.

Driven pile.

A pile driven into the ground by the blows of a hammer or a vibrator.

Precast pile.

A reinforced or prestressed concrete pile cast before driving.

Driven cast in place pile.

A pile installed by driving a permanent or temporary casing, and filling the hole so formed with plan or reinforced concrete.

Displacement piles.

Piled formed by displacement of the soil or ground through which they are driven.

Skin friction.

The frictional resistance of the surrounding soil on the surface of cofferdam or caisson walls, and pile shafts.

Downdrag or negative skin friction. A downwards frictional force applied to the shaft of a pile caused by the consolidation of compressible strata, e.g. under recently placed fill. Downdrag has the effect of adding load to the pile and reducing the factor of safety.

Definition of geotechnical terms used in this report – bearing values

Ultimate bearing capacity.

The value of the gross loading intensity for a particular foundation at which the resistance of the soil to displacement of the foundation is fully mobilised.

Presumed bearing value.

The net loading intensity considered appropriate to the particular type of ground for preliminary design purposes. The particular value is based on calculation from shear strength tests or other field tests incorporating a factor of safety against shear failure.

Allowable bearing pressure.

The maximum allowable net loading intensity at the base of the foundation, taking into account the ultimate bearing capacity, the amount and kind of settlement expected and our estimate of ability of the structure to accommodate this settlement.

Factor of safety.

The ratio of the ultimate bearing capacity to the intensity of the applied bearing pressure or the ratio of the ultimate load to the applied load.

Definition of geotechnical terms used in this report – road pavements

The following definitions are based on Transport and Road Research Laboratory (TRRL) Report LR1132.

Equilibrium CBR values.

A prediction of the CBR value, which will be attained under the completed pavement.

Thin pavement.

A thin pavement (which includes both bound and unbound pavement construction materials 1 in 300mm thick and a thick pavement is 1200mm thick (typical of motorway construction).

Definition of geo-environmental terms used in this report

Conceptual model

Textual and/or schematic hypothesis of the nature and sources of contamination, potential migration pathways (including description of the ground and groundwater) and potential receptors, developed on the basis of the information obtained from the investigatory process.

Contamination

Presence of a substance which is in, on or under land, and which has the potential to cause harm or to cause pollution of controlled water.

Controlled water

Inland freshwater (any lake, pond or watercourse above the freshwater limit), water contained in underground strata and any coastal water between the limit of highest tide or the freshwater line to the three mile limit of territorial waters.

Harm

Adverse effect on the health of living organisms, or other interference with ecological systems of which they form part, and, in the case of humans, including property.

Pathway

Mechanism or route by which a contaminant comes into contact with, or otherwise affects, a receptor.

Receptor

Persons, living organisms, ecological systems, controlled waters, atmosphere, structures and utilities that could be adversely affected by the contaminant(s).

Risk

Probability of the occurrence of, and magnitude of the consequences of, an unwanted adverse effect on a receptor.

Risk Assessment

Process of establishing, to the extent possible, the existence, nature and significance of risk.

Definition of environmental risk/hazard terms used in this report.

Based on CIRIA report C552 'Contaminated land risk assessment – A guide to good practice'.

Potential hazard severity definition

Category	Definition
Severe	Acute risks to human health, catastrophic damage to buildings/property, major pollution of controlled waters
Medium	Chronic risk to human health, pollution of sensitive controlled waters, significant effects on sensitive ecosystems or species, significant damage to buildings or structures.
Mild	Pollution of non sensitive waters, minor damage to buildings or structures.
Minor	Requirement for protective equipment during site works to mitigate health effects, damage to non sensitive ecosystems or species.

Probability of risk definition

Category	Definition
High likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor.
Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term
Low likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so.
Unlikely	Pollutant linkage may be present, but the circumstances under which harm would occur are improbable.

Level of risk for potential hazard definition

Probability of		Potent	ial severity	
risk	Severe	Medium	Mild	Minor
High Likelihood	Very high	High	Moderate	Low/Moderate
Likely	High	Moderate	Low/Moderate	Low
Low Likelihood	Moderate	Low/Moderate	Low	Very low
Unlikely	Low/Moderate	Low	Very low	Very low

Refer sheet 2 for definitions of 'very high' to 'low'

Definition of environmental risk/hazard terms used in this report.

Based on CIRIA report C552 'Contaminated land risk assessment – A guide to good practice'.

Risk classifications and likely action required:

Very high risk

High probability that severe harm could arise to a designated receptor from an identified hazard OR there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised is likely to result in substantial liability. Urgent investigation and remediation are likely to be required.

High risk

Harm is likely to arise to a designated receptor from an identified hazard. This risk, if realised, is likely to result in substantial liability. Urgent investigation is required and remedial works may be necessary in the short term and are likely over the long term.

Moderate risk

It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is likely that the harm would be relatively mild. Investigation is normally required to clarify risks and to determine potential liability. Some remedial works may be required in the long term.

Low risk

It is possible that harm could arise to a designated receptor from an identified hazard but it is likely that this harm, if realised, would at worst normally be mild.

Very low risk

It is a low possibility that harm could arise to a designated receptor. On the event of such harm being realised it is not likely to be severe.

List of documents used in assessment of chemical contamination

No.	Title	Publication reference / publisher
1	Human health toxicological assessment of contaminants in soil	EA Science Report – SC050021/SR2
2	Updated technical background to the CLEA model	EA Science Report – SC050021/SR3
3	CLEA Software (Version 1.03 beta) Handbook	EA Science Report - SC050021/SR4
4	Guidance on comparing Soil Contamination Data with a Critical Concentration	CIEH
5	The LQM/CIEH S4ULs for Human Health Risk Assessment (2015)	LQM/CIEH
6	Assessment of Risks to Human Health from Land Contamination: An overview of the development of soil guideline values and related research	R&D Publication, Contaminated Land Report CLR 7
7	Contaminants of Soil: Collation of Toxicological Data and Intake Values for Humans	R&D Publication, Contaminated Land Report CLR 9
8	The Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms	R&D Publication, Contaminated Land Report CLR 10
9	Model Procedures for the Management of Land Contamination	R&D Publication, Contaminated Land Report CLR 11
10	Contaminants in Soil: Collection of Toxicological Data and Intake Values for Human Values	R&D Publications, Tox. 6
11	Soil Guideline Values for Contamination (2002)	R&D Publications, SGV 10
12	Soil Guideline Values (2009)	EA Science Reports – SC050021
13	Atkins ATRISK ^{SOIL} (2011)	http://www.atrisksoil.co.uk
14	Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination (September 2014)	CL:AIRE
CIEH LQM EA CL:AI	Environment Agency	ronments

soiltechnics environmental and geotechnical consultants

Testing suite summary

Suite	Parameters	Medium
Suite 1	Arsenic, beryllium, boron, cadmium, chromium (total and VI), copper, lead, mercury, nickel, selenium, vanadium zinc, cyanide (free, total and complex), organic matter content, PAH (16 speciated), pH, phenol (total), TOC	Soil
Suite 2	Arsenic, boron (water soluble), beryllium, cadmium, chromium (total), copper, lead, mercury, nickel, selenium, vanadium, zinc, cyanide (free, total and complex, PAH (16 speciated), pH, phenol (total), sulfate (water soluble), sulfide, nitrate	Leachate
Suite 3	Arsenic, boron (water soluble), beryllium, cadmium, chromium (total), copper, lead, mercury, nickel, selenium, vanadium, zinc, cyanide (free, total and complex, PAH (16 speciated), pH, phenol (total), sulfate (water soluble), sulfide, nitrate	Water
Suite 4	TPH Texas Banding Aliphatic/Aromatic Split, PAH (16 speciated), TOC	Soil
Suite 5	TPH Texas Banding Aliphatic/Aromatic Split, PAH (16 speciated)	Leachate
Suite 6	TPH Texas Banding Aliphatic/Aromatic Split, PAH (16 speciated)	Water
Suite 7	TPH Texas Banding Aliphatic/Aromatic Split, TOC, organic matter	Soil
Suite 8	Sulphur (total), sulphate (water and acid soluble), pH	Soil
Suite 9	Sulphate, ammoniacal nitrogen, dissolved magnesium, pH	Water
Suite 10	VOC, SVOC, TOC, organic matter	Soil
Suite 11	VOC, SVOC	Leachate
Suite 12	VOC, SVOC	Water
Suite 13	Organotins dibutyltin/ tributyl-tin/tetrabutyltin/triphenyl-tin, Tetraethyl- lead/tetramethyl-lead	Soil
Suite 14	Organotin	Leachate
Suite 15	Organotin	Water
Suite 16	TPH Texas Banding Aliphatic/Aromatic Split, BTEX, VOC, SVOC	Soil, water, leachate
Suite 17	TPH Texas Banding Aliphatic/Aromatic Split, BTEX, SVOC, VOC, arsenic, boron (water soluble), beryllium, cadmium, chromium (total), copper, lead, mercury, nickel, selenium, vanadium, zinc, cyanide (free, total and complex, pH, phenol (total), sulfate (water soluble), sulfide, nitrate	Soil, water, leachate
Concrete BRE suite	pH, sulphate (water and acid soluble), magnesium (water soluble), ammonia (water soluble), chloride, nitrate	Soil

Pocket Penetrometer Results

Location	Depth		Res	ults		Undrained Shear	Strength Term	Strata
Location	(m)	1	2	3	Av.	Strength (kN/m ²)	Strength Term	Strata
TP01	0.2	1.25	1.5	2	1.6	79	High	WATCOMBE BRECCIA
	0.5	3.5	4	4	3.8	192	Very high	FORMATION WATCOMBE BRECCIA
	0.8	3	3.25	3	3.1	154	Very high	FORMATION WATCOMBE BRECCIA
TP03	3.3	3.5	3.25	3.5	3.4	171	Very high	FORMATION WAICOMBE BRECCIA FORMATION
TP07	0.8	4.5	4.5	4.5	4.5	225	Very high	FORMATION WATCOMBE BRECCIA FORMATION
TP09	0.1	0.2	0.18		0.2	10	Very low	MADE GROUND
	0.5	1	1	1	1.0	50	Medium	MADE GROUND
	0.8	0.25	0.5	0.5	0.4	21	Low	MADE GROUND
	1	1	1.25	0.75	1.0	50	Medium	ALLUVIUM
	1.2	0.5	0.5	1	0.7	33	Low	ALLUVIUM
	1.8	0.5	1	1	0.8	42	Medium	ALLUVIUM
TP10	0.3	0.5	0.5	0.5	0.5	25	Low	ALLUVIUM
	0.4	1.5	1.5	1.25	1.4	71	Medium	ALLUVIUM
	0.8	1	1	0.75	0.9	46	Medium	ALLUVIUM
	1	1	1	1	1.0	50	Medium	ALLUVIUM
	1.3	0.5	0.5	0.5	0.5	25	Low	ALLUVIUM
	1.6	1.5	1.25	1.25	1.3	67	Medium	ALLUVIUM
TP12	0.3	1.5	1.25	2	1.6	79	High	ALLUVIUM
	0.8	2	1	1.25	1.4	71	Medium	ALLUVIUM
	1.2	1.5	1.5	1.75	1.6	79	High	ALLUVIUM
	1.5	1.5	1.25	1	1.3	63	Medium	ALLUVIUM

Notes

- 1. Pocket penetrometer determinations converted to undrained shear strength using a factor of 50.
- 2. Undrained shear strength is based on average pocket penetrometer determination.
- 3. Strength terms in accordance with BS EN ISO 14688-2 2004.

Title

Table summarising results of pocket penetrometer determinations

Appendix

С

soiltechnics

environmental and geotechnical consultants

	STRATA				WATER	IN SITU T	ESTING		SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto firm to stiff high to v (WATCOMBE BRECCIA FORMATI	ery high strength red slightly gravelly sandy CLAY. Sand is fine to medium. Gravel consists of fine to medium sub-angular flint, quartz, and sandstone. ON)	-				PP 0.20	PP=79	0.10		D
		-				PP 0.50	PP=192	0.60		D
from 1m depth, becoming very sandy.		-				PP 0.80	PP=154	0.90 1.00	1.50	D B
		-								
		-								
Loose red slightly gravelly claye (WATCOMBE BRECCIA FORMAT	y fine to coarse SAND. Gravel consists of fine to medium sub-angular sandstone, limestone and weathered breccia. ON)	1.75 	38.25					1.80		D
		- - - - -			_			2.50		D
	CONTINUED ON NEXT SHEET									
Key D Small Disturbed Sample B Bulk Disturbed Sample ES Environmental Sample W Water Sample C Core sample	Collapse of southern trial pit side from 2m to 3m depth widening trial pit by 0.3m.	Title Trial pit reco Method			Dimension 1.00m x 3.0 Logged by			te(s)	05/01/2	018
UT Undisturbed Sample S Standard Penetration Test C Standard Penetration Test (solid cone) PP Pocket Penetrometer test	Groundwater observations Seepage observed at 2.3m (37.7m mAOD) depth, at an approximate rate of 5 litres per minute. Seepage on north-eastern trial pit wall.	13T tracked Level (m OD 40.00 Co-ordinate))	1	DN Compiled I KM Checked by	-	She	/01/2018 - eet numbe eet 1 of 2	er	.018
SV Shear Vane test PID Photo Ionisation Detector test		288840mE,			Checked by	/		TF	P01	
Report ref: STP4262-G01									Revisi	on: 0

soiltechnics

environmental and geotechnical consultants

	STRATA					WATER	IN SITU	TESTING		SAMPLIN	3
DESCRIPTION		DEF (n	TH F	REDUCED VL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TY
oose red slightly gravelly c	clayey fine to coarse SAND. Gravel consists of fine to medium sub-angular sandstone, limestone and weathered breccia.									+	
WATCOMBE BRECCIA FORI from 3m depth, frequent gravel	MATION) I-sized pockets of green grey silty fine to medium SAND. Sand is sub-angular to sub-rounded.								3.10		
									3.10		
		2	40	36.60							
	TRIAL PIT TERMINATED AT 3.40m	3	40	50.00							
		_									
		_									
		_									
		_									
		_									
		_									
		_									
		_									
		_									
		_									
		_									
		_									
		_									
											Τ
,	Notes	Title				Dimensio	ns (w x l)				
• mall Disturbed Sample	Collarse of southern trial nit side from 2m to 3m denth widening trial nit by 0.3m										

кеу	Notes	litie	Dimensions (W X I)	
D Small Disturbed Sample B Bulk Disturbed Sample	Collapse of southern trial pit side from 2m to 3m depth widening trial pit by 0.3m.	Trial pit record	1.00m x 3.00m	
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		13T tracked excavator	DN	03/01/2018 - 05/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Seepage observed at 2.3m (37.7m mAOD) depth, at an approximate rate of 5 litres per minute. Seepage on north-eastern trial pit wall.	40.00	KM	Sheet 2 of 2
PP Pocket Penetrometer test SV Shear Vane test		Co-ordinates	Checked by	TP01
PID Photo Ionisation Detector test		288840mE, 66259mN		IPUI
Report ref: STP4262-G01				Revision: 0

PP Pocket Penetrometer test

PID Photo Ionisation Detector test Report ref: STP4262-G01

SV Shear Vane test

soiltechnics

environmental and geotechnical consultants

STRATA					WATER	IN SITU TESTING			SAMPLING		
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE	
Grass onto loose red slightly gra occasional breccia. (MADE GROUND)	zelly clayey fine to medium SAND with rootlets up to 12mm in diameter to 0.9m depth. Gravel consists of fine to medium sub-angular sandstone and	-						0.20		D	
		-						0.50	0.80	В	
at 0.9m depth, boulder of square angu	lar sandstone up to 0.3x0.4x0.2m in diameter.	-						0.80	1.20	в	
								1.50		D	
Loose to medium dense red slig (WATCOMBE BRECCIA FORMATI	ntly clayey gravelly fine to medium SAND. Gravel consists of fine to coarse angular to sub-angular sandstone and weathered breccia. DN)	2.20 	40.70					2.10 2.20	2.40	D B	
		-						2.60		D	
	CONTINUED ON NEXT SHEET										
Key D. Small Disturbed Sample B. Bulik Disturbed Sample ES. Environmental Sample W. Water Sample	Notes Trial pit sides remained upright and stable upon completion.				Dimensions (w x l) 0.70m x 3.00m Logged by			Date(s)			
C Core sample UT Undisturbed Sample S Standard Penetration Test C Standard Penetration Test (solid cone)	Groundwater observations No groundwater encountered.	Level (m OD)					She	01/2018 et numb et 1 of 2	er	2018	

Co-ordinates

288822mE, 66258mN

Checked by

TP02

PP Pocket Penetrometer test

PID Photo Ionisation Detector test Report ref: STP4262-G01

SV Shear Vane test

soiltechnics

environmental and geotechnical consultants

		STRATA				WATER	IN SITU	TESTING		SAMPLING	
DESCRIPTION			DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Loose to medium dense red slig (WATCOMBE BRECCIA FORMAT		ine to coarse angular to sub-angular sandstone and weathered breccia.	_						3.00		В
between 3.2m and 3.4m depth, becom	ning very clayey.		_						3.20		D
from 3.3m frequent gravel sized pock	ts of green grey silty SAND.		_								
	TRIAL DIT TERM	INATED AT 3 70m	3.70	39.20							
	TRIAL PIT TERM	INATED AT 3.70m		39.20							
			-								
Key	Notes		Title			Dimensions (w x l)				ıl	
D Small Disturbed Sample B Bulk Disturbed Sample	Trial pit sides remained upright and stable upon completion	n.				0.70m x 3.00m					
ES Environmental Sample W Water Sample C Core sample			Method 13T tracked	evcavator		Logged by DN	1		te(s) /01/2018	- 05/01/3	018
UT Undisturbed Sample	Groundwater observations		Level (m OE			Compiled	bv		eet numb		010
S Standard Penetration Test C Standard Penetration Test (solid cone)	No groundwater encountered.		42.90			км			eet 2 of 2		

Co-ordinates

288822mE, 66258mN

Checked by

TP02

environmental and geotechnical consultants

			WATER	IN SITU	TESTING		ŝ		
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	nse red brown slightly gravelly very clayey fine to medium SAND. Gravel consists of fine to medium sub-angular sandstone, quartz and limestone.					RESULT			D D D
(WATCOMBE BRECCIA FORMATI	y gravelly fine to medium SAND. Gravel consists of fine to coarse angular sandstone limestone and breccia. ON)	- 1.90 	43.85				2.00		B
	CONTINUED ON NEXT SHEET								Ĺ
Key D. Small Disturbed Sample B. Bulk Disturbed Sample ES. Environmental Sample W. Water Sample C. Core sample	Trial pit sides remained upright and stable upon completion.	Trial pit record C Method L		0.70m x 2	Dimensions (w x l) 0.70m x 2.00m Logged by		e(s)	05/00/	
C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test (solid cone)	Groundwater observations	Level (m OD)			ompiled by		01/2018 et numb et 1 of 2		2018
PP Pocket Penetrometer test SV Shear Vane test PID Photo lonisation Detector test		Co-ordinates 0 288792mE, 66256mN 0		Checked	Checked by		ТР03		
Report ref: STP4262-G01						•		Revis	i on: 0

soiltechnics

environmental and geotechnical consultants

	STRATA			WATER	IN SITU	IN SITU TESTING			G
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TY
WATCOMBE BRECCIA FORM									
from 3.0m depth, frequent cobbl	le sized pockets of firm mottled orange brown sandy CLAY.	-							
		-		-	PP 3.30	PP=171	3.30		
Extremely weak medium de WATCOMBE BRECCIA FORN	ense dark purple BRECCIA extracted as slightly clayey GRAVEL. Gravel consists of fine to coarse angular breccia. AATION)	3.40	42.35				3.50		
	TRIAL PIT TERMINATED AT 3.60m	3.60	42.15						
		-							
		-							
		-							
		-							
		-							
		Ŀ							
		_							
		_							
		_							
		-							
		-							
		-							
ey	Notes	Title		Dimensio	ns (w x l)		I	1	1
Small Disturbed Sample Bulk Disturbed Sample	Trial pit sides remained upright and stable upon completion.	Trial pit rec	ord	0.70m x 2					
S Environmental Sample V Water Sample Core sample IT Undisturbed Sample		Method 13T tracked	excavator	Logged by DN	/		e(s) 01/2018	- 05/01/	/201
Standard Penetration Test	Groundwater observations	Level (m Ol	D)	Compiled	by		et numb		

45.75

Co-ordinates

288792mE, 66256mN

КM

Checked by

S Standard Penetration Test C Standard Penetration Test (solid cone)

No groundwater encountered. PID Photo Ionisation Detector test

PP Pocket Penetrometer test

SV Shear Vane test

Sheet 2 of 2

TP03

soiltechnics

STRATA							resting	5	SAMPLING				
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	WATER STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE			
Grass onto loose red slightly clay	rey gravelly SAND. Gravel consists of fine to medium sandstone and breccia.												
		_											
		-											
	TRIAL PIT TERMINATED AT 0.40m	0.40	45.10	. (<u>19</u> 14)	·								
		-											
		-											
		-											
		L											
		F											
		-											
		-											
		-											
		-											
		-											
		L											
		_											
		-											
		-											
		-											
		F											
		L											
		Ļ											
		\vdash											
				I									
Key	Notes T	tle			Dimensio	ns (w x I)							

Key	Notes	Title	Dimensions (w x l)								
D Small Disturbed Sample B Bulk Disturbed Sample	Trial pit relocated. Trial pit encountered 25mm diameter blue plastic water service pipe. Trial pit sides remained upright and stable upon completion.	Trial pit record	0.60m x 2.50m								
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)							
C Core sample UT Undisturbed Sample		13T tracked excavator	DN	03/01/2018 - 05/01/2018							
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number							
C Standard Penetration Test (solid cone)	No groundwater encountered.	45.50	KM	Sheet 1 of 1							
PP Pocket Penetrometer test SV Shear Vane test		Co-ordinates	Checked by	TP03A							
PID Photo Ionisation Detector test		288799mE, 66248mN		IPUSA							
Report ref: STP4262-G01	Report ref: STP4262-G01 Revision: 0										

Report ref: STP4262-G01

soiltechnics

environmental and geotechnical consultants

	STRATA				WATER	IN SITU TE	STING	5	SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto loose red brown slig (WATCOMBE BRECCIA FORMATI	itly gravelly clayey fine to medium SAND. Gravel consists of fine to medium angular sandstone and weathered breccia. >N)	-						0.20		D
		-						0.70		D
Loose red brown clavey gravelly	fine to medium SAND. Gravel consists of fine to medium sub-angular to angular sandstone, limestone and breccia.	- 1.40	41.40					1.10		D
(WATCOMBE BRECCIA FORMATI		_	-					1.50		D
					▾			1.70		В
Medium dense dark red brown s (WATCOMBE BRECCIA FORMATI	lightly clayey slightly gravelly fine to coarse SAND. Gravel consists of fine to medium sub-angular to angular sandstone, limestone and breccia. DN)	2.60	40.20					2.70		В
	CONTINUED ON NEXT SHEET									
Key D Small Disturbed Sample B Bulk Disturbed Sample	Notes Collapse of trial pit sides from 2.2m to 2.4m depth widening trial pit by 0.2m each side.	Title Trial pit reco	rd		Dimension 0.70m x 2.5					
ES Environmental Sample W Water Sample C Core sample UT Undisturbed Sample		Method 13T tracked			Logged by DN			01/2018 -		.018
S Standard Penetration Test C Standard Penetration Test (solid cone)	Groundwater observations Seepage observed from 2.4m (40.4m mAOD) depth, at an approximate rate of 2 litres per minute. Groundwater measured at 3.3m depth 1 hour after	Level (m OD 42.80))		Compiled k KM	ру		et numbe et 1 of 2	er	
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	completion.	Co-ordinate 288799mE,			Checked by	/		TP	04	

Revision: 0

soiltechnics

	STRATA				WATER	IN SITU	TESTING		SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
(WATCOMBE BRECCIA FORMATI		-								
from 3.2m depth, frequent gravel-size		- 3.50	39.30					3.40		w
	TRIAL PIT TERMINATED AT 3.50m									
		-								
		-								
		-								
		-								
		-								
		-								
										[
Key D Small Disturbed Sample		Fitle Trial nit reco	rd		Dimensio					

Re	port ref: STP4262-G01				Revision: 0
	Photo Ionisation Detector test		288799mE, 66284mN		1104
	Pocket Penetrometer test Shear Vane test	completion.	Co-ordinates	Checked by	TP04
C	tandard Penetration Test (solid cone)	Seepage observed from 2.4m (40.4m mAOD) depth, at an approximate rate of 2 litres per minute. Groundwater measured at 3.3m depth 1 hour after	42.80	KM	Sheet 2 of 2
S S	tandard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
С	Water Sample Core sample Undisturbed Sample		13T tracked excavator	Logged by DN	03/01/2018 - 05/01/2018
В	Small Disturbed Sample Bulk Disturbed Sample Environmental Sample	Collapse of trial pit sides from 2.2m to 2.4m depth widening trial pit by 0.2m each side.	Trial pit record Method	0.70m x 2.50m	Date(s)

Report ref: STP4262-G01

soiltechnics

	STRATA				WATER	IN SITU T	ESTING	:	SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto loose dense red brov (MADE GROUND)	wn slightly clayey slightly gravelly fine to medium SAND. Gravel consists of fine to coarse sub-angular plastic, brick, sandstone, quartz and metal.	-						0.20		D
Loose red brown slightly clayey (MADE GROUND)	slightly gravelly fine to medium SAND. Gravel consists of fine to medium sub-angular sandstone and breccia.	- 0.50 - 0.80	43.20					0.70		ES
Loose to medium dense red bro (WATCOMBE BRECCIA FORMATI	wn slightly gravelly very clayey fine to medium SAND. Gravel consists of fine to medium sub-angular to angular sandstone, limestone and breccia. ON)		42.90		•			1.10		ES
		-			•			1.10		LJ
		- 1.70	42.00					1.50		ES
(WATCOMBE BRECCIA FORMATI		-	42.00					2.60		В
from 2.6m depth, dark red brown and	occasional pockets of green grey silty SAND.	-			•					_
	CONTINUED ON NEXT SHEET									
Key D. Small Disturbed Sample B. Bulk Disturbed Sample ES. Environmental Sample W. Water Sample C. Core sample UT Undisturbed Sample	Trial pit sides remained upright and stable upon completion.	Title Trial pit reco Method 13T tracked			Dimension 0.70m x 2. Logged by DN	00m		: e(s) 01/2018 -	- 05/01/2	018
S Standard Penetration Test C Standard Penetration Test (solid cone)		Level (m OD 43.70))		Compiled KM	by		e t numb et 1 of 2	er	
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Co-ordinate 288781mE,			Checked b	у		TF	P05	

soiltechnics

STRATA WATER		TESTING		SAMPLING						
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Medium dense red brown slight (WATCOMBE BRECCIA FORMATI	ly clayey gravelly fine to medium SAND. Gravel consists of fine to medium sub-angular to angular sandstone and breccia. ON)	_								
from 3.2m depth, frequent cobbles of	rub annular krassin	_			-					
								3.30 3.50		B B
	TRIAL PIT TERMINATED AT 3.60m	3.60	40.10							
		- - - - -								
		-								
		_								
		-								
		-								
		_								
ι		1	1		1					
Кеу		Title			Dimensio					
D Small Disturbed Sample B Bulk Disturbed Sample	Trial pit sides remained upright and stable upon completion.	Trial pit reco	ord		0.70m x 2.	00m				
ES Environmental Sample		Method			Logged by		Da	ate(s)		

ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		13T tracked excavator	DN	03/01/2018 - 05/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	No groundwater encountered.	43.70	КМ	Sheet 2 of 2
PP Pocket Penetrometer test SV Shear Vane test		Co-ordinates	Checked by	TP05
PID Photo Ionisation Detector test		288781mE, 66287mN		1905
Report ref: STP4262-G01				Revision: 0

soiltechnics

	STRATA				WATER	IN SITU T	ESTING	5	SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)		STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Loose red brown clayey gravelly brick, plastic, sandstone, metal, (MADE GROUND)	fine to coarse SAND with frequent cobbles and boulders of sandstone breccia and slate up to 0.4x0.2x0.3m. Gravel consists of fine to coarse sub-angular china and breccia.	- - - - - -						0.20		D
Loose to medium dense red bro (WATCOMBE BRECCIA FORMATI)	wn slightly gravelly clayey fine to medium SAND. Gravel consists of fine to coarse sub-angular sandstone. ON)	0.80	45.50	*****	× • •					
								2.00		D
Loose to medium dense dark red (WATCOMBE BRECCIA FORMATI	d brown slightly clayey gravelly fine to medium SAND. Gravel consists of fine to coarse sub-angular sandstone and weathered breccia. ON)	2.60	43.70					2.80		D
	CONTINUED ON NEXT SHEET									
Key D. Small Disturbed Sample B. Bulk Disturbed Sample ES. Environmental Sample W. Water Sample C. Core sample UT Undisturbed Sample	Trial pit sides remained upright and stable upon completion.	Title Trial pit reco Method 13T tracked			Dimension 0.70m x 2.0 Logged by DN		Date 03/0	e(s) 01/2018 -	05/01/2	018
S Standard Penetration Test	Groundwater observations	Level (m OI	D)		Compiled b	у	She	et numbe	er	
C Standard Penetration Test (solid cone)	No groundwater encountered.	46.30			KM		Shee	et 1 of 2		
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Co-ordinate 288775mE,			Checked by	/		TP	0 6	
Report ref: STP4262-G01									Revisi	on: 0

soiltechnics

	STRATA				WATER	IN SITU ⁻	resting	SAMPLING		
DESCRIPTION		DEPTH (m)	REDUCED	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYP
Loose to medium dense dark re WATCOMBE BRECCIA FORMAT	d brown slightly clayey gravelly fine to medium SAND. Gravel consists of fine to coarse sub-angular sandstone and weathered breccia. ON)	_							. ,	
		-	12.00		- - -					
	TRIAL PIT TERMINATED AT 3.30m	- 3.30 -	43.00							
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		-								
Ŷ		tle			Dimensio					
Small Disturbed Sample Bulk Disturbed Sample Environmental Sample		ial pit reco	ord		0.70m x 2.	.00m		- (-)		

B Bulk Disturbed Sample		1		
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		13T tracked excavator	DN	03/01/2018 - 05/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
	No groundwater encountered.	46.30	KM	Sheet 2 of 2
PP Pocket Penetrometer test SV Shear Vane test		Co-ordinates	Checked by	TP06
PID Photo Ionisation Detector test		288775mE, 66267mN		IPUO
Report ref: STP4262-G01				Revision: 0

PID Photo Ionisation Detector test
Report ref: STP4262-G01

soiltechnics

	STRATA			WATER	IN SITU T	ESTING		SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto loose red brown ver (MADE GROUND)	y gravelly fine to coarse SAND with frequent cobbles of sub-angular concrete, sandstone and breccia.	-					0.20		D
Stiff very high strength red brow (WATCOMBE BRECCIA FORMAT	vn slightly gravelly very sandy CLAY. Gravel consists of fine to medium sub-angular sandstone. ION)	- 0.60 	37.20	~	PP 0.80	PP=225	0.70		D
Loose red brown slightly gravel (WATCOMBE BRECCIA FORMAT	iy clayey fine to medium SAND. Gravel consists of fine to medium sub-angular sandstone and limestone. ION)	1.00 	36.80				1.20		D
Medium dense dark red brown	clayey gravelly fine to coarse SAND with frequent pockets of green grey silty sand. Gravel consists of fine to coarse sub-angular sandstone and breccia.	- - - - - - -	36.00				1.90		D
from 2.3m depth, becoming slightly o	TRIAL PIT TERMINATED AT 2.70m	2.70	35.10	•			2.60		В
Key D Small Disturbed Sample B Bulk Disturbed Sample ES Environmental Sample W Water Sample C Core sample UT Undisturbed Sample	Notes Trial pit terminated due to instability of pit walls. Collapse of trial pit side from 0.7m to 1.8m depth widening trial pit by 0.6m on western side.	Title Trial pit reco Method 13T tracked		Dimension 0.70m x 3. Logged by DN	00m		:e(s) 01/2018	- 05/01/2	2018
S Standard Penetration Test C Standard Penetration Test (solid cone) PP Pocket Penetrometer test	Groundwater observations Seepage observed at 2.5m (35.3m mAOD) depth, filling trial pit at an approximate rate of 5 litres per minute.	Level (m OD 37.80 Co-ordinate		Compiled KM Checked b			e t numb et 1 of 1		
SV Shear Vane test PID Photo Ionisation Detector test		288868mE,		Checked b	'Y		T	P07	

soiltechnics

	WATER	IN SITU	TESTING		SAMPLING	ì				
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)		STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto firm red brown slight (MADE GROUND)	ly gravelly sandy CLAY. Gravel consists of fine to medium sub-angular sandstone.	-						0.30		ES
Loose red brown black slightly g (ALLUVIUM)	ravelly very clayey fine to medium SAND. Gravel consists of fine to medium sandstone.	0.50 - - - -	35.75					0.60		ES
Loose red brown clayey gravelly (WATCOMBE BRECCIA FORMATI	fine to coarse SAND. Gravel consists of fine to coarse sub-angular breccia and sandstone. ON)	1.10 	35.15		-			1.10 1.20		ES D
	TRIAL PIT TERMINATED AT 1.80m	- - - - 1.80	34.45					1.50		D
		- - - - - - - - - - - - -								
Key D Small Disturbed Sample B alik Disturbed Sample ES Environmental Sample W Water Sample C Core sample	Notes Trial pit terminated due to instability of pit walls. Collapse of trial pit side to 1.2m depth widening trial pit by 0.4m on northern side and 0.5m on southern side.	Title Trial pit recc Method 13T tracked			Dimensio 0.70m x 2 Logged by DN	.50m		e(s) 01/2018	05/01/2	
UT Undisturbed Sample S. Standard Penetration Test C. Standard Penetration Test (solid cone)	Groundwater observations No groundwater encountered.	131 tracked Level (m OE 36.25			Compiled KM	by	She	et numb et 1 of 1	er	.018
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Co-ordinate 288893mE,			Checked b	у		TI	P08	
Report ref: STP4262-G01		·							Revis	ion: C

soiltechnics

	STRATA			WATER	IN SITU	resting		SAMPLING	i
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto firm low to medium (MADE GROUND)	strength red brown slightly gravelly sandy CLAY. Gravel consists of fine to medium sub-angular sandstone.	_			PP 0.10	PP=10	0.20		D
		_			PP 0.50	PP=50	0.40		D
		_			PP 0.80	PP=21	0.70		D
Soft low to medium strength so (ALLUVIUM)	t grey slightly sandy CLAY.	0.95 	34.85	2	PP 1.00	PP=50	1.00 1.00		D D
Soft low orange brown slightly s (ALLUVIUM)	andy slightly gravelly CLAY. Gravel consists of fine to medium sub-angular sandstone.	- 1.15 - -	34.65		PP 1.20	PP=33	1.20 1.20		D D
Soft low to medium strength ree (ALLUVIUM)	brown slightly sandy slightly gravelly CLAY. Gravel consists of fine to medium sub-angular sandstone. Sand is fine to medium.	- 1.40 	34.40						
Losso to modium dones rad bra	wn slightly clayey gravelly fine to coarse SAND.	- 2.10	33.70	-	PP 1.80	PP=42	1.80		D
		2.20	33.60	<u>.</u>					
		- - - -							
Key D Small Disturbed Sample B Bulk Disturbed Sample		itle rial pit reco	rd	Dimension					
ES Environmental Sample W Water Sample C Core sample UT Undisturbed Sample		/lethod .3T tracked	excavator	Logged by DN		Dat 03/	e(s) 01/2018	- 05/01/2	2018
S Standard Penetration Test C Standard Penetration Test (solid cone)		evel (m OD 5.80)	Compiled KM	by		et numb et 1 of 1	er	
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Co-ordinate 88870mE, 6		Checked b	Ŷ		Т	P0 9	
Report ref: STP4262-G01						I		Revis	ion: 0

soiltechnics

DESCRIPTION REDUCED LEGEND LEGEND STRIKES TYPE / DEPTH (m) RESULT REOU CO Grass onto firm medium strength red brown slightly gravelly sandy CLAY. Gravel consists of fine to medium sub-angular sandstone. -		STRATA				WATER	IN SITU	TESTING		SAMPLING	;
Grass and firm medium steright red brown slightly gravelly sindy CLN: Gravel consists of fire to medium sub-angular sandstone.	DESCRIPTION				LEGEND	STRIKES		RESULT			TYP
we soft is soft medium strength gravely grave		red brown slightly gravelly sandy CLAY. Gravel consists of fine to medium sub-angular sandstone.	_								
$ \frac{1}{120} $ The set of the soft medium strength gravely singly (2AX Gravel consists of fine to medium sub angular sindictore. $ \frac{1}{120} $ $ \frac{1}{30} $ $ \frac{1}{120} $			_				PP 0.30	PP=25			
Very soft to soft medium strength gravely sandy CLAX Gravel consists of fine to coarse sub-angular sandstone. -<			-				PP 0.40	PP=71			D ES
Very soft low to medium strength orange brown slightly gravelly sandy CLAX. Gravel consists of fine to coarse sub-angular sandstone. 1.20 35.30 1.00 PP 1.30 PP 2.55 1.30 LIALLUNUM. 1.75 34.75 34.75 P1 1.00 PP 1.00 PP 2.50 1.30 LIOUS COMPENDENCE 2.30 34.20 P1 1.00 PP 2.50 1.30 1.30 LIOUS COMPENDENCE 1.75 34.75 Very Soft low to medium strength orange brown slightly gravelly very days fine to coarse sub-angular sandstone. 1.75 34.75 P1 1.00 PP 2.50 1.30 LIOUS COMPENDENCE Very Soft low to medium dense red brown slightly gravelly very days fine to coarse sub-angular sandstone. 1.75 34.75 P1 1.00 PP 2.50 1.30 LIOUS COMPENDENCE Very Soft low to medium dense red brown slightly gravelly very days fine to coarse sub-angular sandstone. 1.75 34.75 P1 1.00 PP 2.50 1.30 LIOUS COMPENDENCE Very Soft low to medium dense red brown slightly gravelly very days fine to coarse sub-angular sandstone. 1.75 34.75 P1 1.00 P2 -57 1.80 LIOUS COMPENDENCE Very Soft low to medium dense red brown slightly gravelly very days fine to coarse sub-angular sandstone. 1.75 34.75		n grey slightly gravelly sandy CLAY. Gravel consists of fine to medium sub-angular sandstone.	0.75	35.75			PP 0.80	PP=46			D
Very split low to medium strength orange brown slightly gravelly sandy CLAC Gravel consists of fine to coarse sub-angular sandstone. 1.00 35.30 -1 0 $pp 1.30$ $pp .25$ 1.30 Loose to medium dense red brown slightly gravelly very clayer fine to coarse SAND. Gravel consists of fine to coarse sub-angular sandstone. 1.75 34.75 -1.75 -1.75 34.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 <			-		 		PP 1.00	PP=50			D
Loose the medium dense relation will highly gravelly very days fine to coarse SAND. Gravel consists of fine to coarse sub-angular sandstone. (WATCOMBE BRECCA FORMATION III) the medium dense relation of the coarse sub-angular sandstone. (WATCOMBE BRECCA FORMATION III) the medium dense relation of the coarse sub-angular sandstone. (WATCOMBE BRECCA FORMATION IIII) the medium dense relation of the coarse sub-angular sandstone. (WATCOMBE BRECCA FORMATION IIII) the medium dense relation of the coarse sub-angular sandstone. (WATCOMBE BRECCA FORMATION IIIII) the medium dense relation of the coarse sub-angular sandstone. (WATCOMBE BRECCA FORMATION IIIIII) the medium dense relation of the coarse sub-angular sandstone. (WATCOMBE BRECCA FORMATION IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		n orange brown slightly gravelly sandy CLAY. Gravel consists of fine to coarse sub-angular sandstone.	- 1.20	35.30			PP 1.30	PP=25	1.30		D D D
Loose to medium dense red brown slightly gravelly very clayey fine to coarse SAND. Gravel consists of fine to coarse sub-angular sandstone. 1.7.5 34.75 Image: Comparison of the coarse sub-angular sandstone. (WATCOMBE BRECCIA FORMATION) Image: Comparison of the coarse sub-angular sandstone. 1.7.5 34.75 Image: Comparison of the coarse sub-angular sandstone. 1.80 1.8			_		L _		PP 1.60	PP=67			
Notes Notes Nishibility started at 1.1m Trial pit terminated due to instability of pit walls. Collapse of trial pit sides from 0.3m to 1.4m depth widening trial pit to 2.5m Title massions (wx l) Dimensions (wx l) 0. Small four due to size and to 2.5m Trial pit record 0.70m x 2.50m Dimensions (wx l) 0. Small four due to instability of pit walls. Collapse of trial pit sides from 0.3m to 1.4m depth widening trial pit to 2.5m Trial pit record Dimensions (wx l) 0. for dual phone trains field. O.70m x 2.50m Trial pit record Down x 2.50m Visues simple O.70m x 2.50m Dimensions (wx l) O.70m x 2.50m 0.4m each side. Down x 2.50m Dimensions (wx l) O.70m x 2.50m 0.4m each side. Dimensions (wx l) O.70m x 2.50m Dimensions (wx l) O.70m x 2.50m 0.4m each side. Dimensions (wx l) Dimensions (wx l) O.70m x 2.50m Dimensions (wx l) O.70m x 2.50m 0.4m each side. Dimensions (wx l) Dimensions (wx l) Dimensions (wx l) O.70m x 2.50m Dimensions (wx l) O.70m x 2.50m 0.4m each side. Dimensions (wx l) Dimensions (wx l) Dimensions (wx l) O.70m x 2.50m Dimensions (wx l) O.70m x 2.50m Dimensions (wx l) Dimensio			1.75 	34.75					1.80 1.80 2.00		D D B B
Small Disturbed Sample 8 Bub Disturbed Sample 5 Environment Sample V Water Sample C Core sample C Core sample C Samdar Penetration Test S Sandar Penetration Test S Sandar Penetration Test C Sandard Penetrat		TRIAL PIT TERMINATED AT 2.30m	2.30	34.20							
D Small Disturbed Sample B Bubli Disturbed Sample S chrivmenne Sample C Core sample C Core sample C Standard Penetration Test C Sandard Penetration Test			-								
Standard Penetration Test Computed Resourcemental Sample Method Logged by Date(s) 0.4 m each side, DN 03/01/2018 - 05/01/20 03/01/2018 - 05/01/20 03/01/2018 - 05/01/20 Standard Penetration Test Computed Resourcemental Test Compiled by Sheet number Sheet number Standard Penetration Test No groundwater encountered. Compiled by Sheet number Sheet number	D Small Disturbed Sample	Instability started at 1.1m Trial pit terminated due to instability of pit walls. Collapse of trial pit sides from 0.3m to 1.4m depth widening trial pit by		ord					1	I	
Standard Penetration Fest (solid cone) 36.50 KM Sheet 1 of 1	ES Environmental Sample N Water Sample C Core sample	0.4m each side.		excavator			y			- 05/01/	2018
	5 Standard Penetration Test))			bγ			er	
PID Photo Ionisation Detector test 288870mE, 66280mN	SV Shear Vane test		Co-ordinate				by			P10	

soiltechnics

	STRATA				WATER	IN SITU T	ESTING	:	SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto loose red brown slig (MADE GROUND)	htly gravelly very clayey fine to medium SAND. Gravel consists of fine to medium sub-angular sandstone.	- - - - - - - - -						0.20 0.20		D ES D D
Loose red brown clayey gravelly (WATCOMBE BRECCIA FORMATI	fine to coarse SAND. Gravel consists of fine to medium sub-angular to angular sandstone. ON)	- - 1.15	39.55					0.80		D
		-	20.20					1.30		D
Loose dark red brown slightly cl (WATCOMBE BRECCIA FORMATI			39.20		¥			1.60 1.60 2.30 2.30	1.90 1.90	B B D D
from 2.7m depth, becoming medium o		-								
	CONTINUED ON NEXT SHEET									
Key D. Small Disturbed Sample B. Buik Disturbed Sample ES Environmental Sample W. Water Sample C. Core sample UT Undisturbed Sample	Notes Collapse of trial pit sides from 0m to 2.0m depth widening trial pit by 0.6m on western side.	Title Trial pit reco Method 13T tracked			Dimension 0.70m x 2 Logged by DN	50m	Dat 03/0	e(s) 01/2018 -	- 05/01/2	2018
S Standard Penetration Test C Standard Penetration Test (solid cone) PP Pocket Penetrometer test	Groundwater observations Seepage observed at 2.1m (38.6m mAOD) depth, filling trial pit at an approximate rate of 10 litres per minute.	Level (m OD 40.70 Co-ordinate			Compiled KM Checked k			et numb et 1 of 2		
SV Shear Vane test PID Photo Ionisation Detector test		288825mE,			eeeneu k	.1		TF	P11	
Report ref: STP4262-G01									Revisi	i on: 0

soiltechnics

environmental and geotechnical consultants

STRATA	WATER	IN SITU	TESTING		SAMPLIN	G			
DESCRIPTION	DEPT (m)	H REDUCE	D LEGENI	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYF
oose dark red brown slightly clayey gravelly fine to coarse SAND. Gravel consists of fine to medium sub-angular to angular sandstone, limestone and weathered breccia. WATCOMBE BRECCIA FORMATION)									
							3.10		В
	_						3.10		6
TRIAL PIT TERMINATED AT 3.30m	3.3	37.40	. 642,0						
	-								
	L								
	L								
	-								
	-								
	E E								
	_								
	-								
	-								
	-								
	_								
	-								
	F								
	F								
	-								
y Notes	Title	1		Dimensio	· · · · · · · · · · · ·				_

Кеу	Notes	Title	Dimensions (w x l)	
D Small Disturbed Sample B Bulk Disturbed Sample	Collapse of trial pit sides from 0m to 2.0m depth widening trial pit by 0.6m on western side.	Trial pit record	0.70m x 2.50m	
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		13T tracked excavator	DN	03/01/2018 - 05/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Seepage observed at 2.1m (38.6m mAOD) depth, filling trial pit at an approximate rate of 10 litres per minute.	40.70	KM	Sheet 2 of 2
PP Pocket Penetrometer test		Co-ordinates	Checked by	TD11
SV Shear Vane test PID Photo Ionisation Detector test		288825mE, 66282mN		TP11
• • • • • • • • • • • • • • • • • • •		·	·	

Report ref: STP4262-G01

soiltechnics

	STRATA				WATER	IN SITU	TESTING		SAMPLING	3
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto high strength firm o (ALLUVIUM)	orange brown slightly gravelly sandy CLAY. Gravel consists of fine to medium sub-angular sandstone.	-				20.0.20	70 70	0.20		ES
Firm to stiff medium strength (grey slightly gravelly sandy CLAY. Gravel consists of fine to medium sub-angular sandstone.	0.50	36.45			PP 0.30	PP=79	0.55		D
(ALLUVIUM)	rength orange brown slightly gravelly very sandy CLAY. Gravel of fine to medium sub-angular sandstone.	0.60	36.35		-			0.55		D
(ALLUVIUM)		-			-	PP 0.80	PP=71	0.80 0.80		D D
		-			-	PP 1.20	PP=79			
		 	35.25			PP 1.50	PP=63	1.50 1.50		D D
Loose medium strength red gr breccia. (WATCOMBE BRECCIA FORMA	avelly very clayey fine to medium SAND. Gravel consists of fine to medium SAND. Gravel consists of fine to coarse sub-angular to angular sandstone and	-			- - - -			1.80 1.80		D D
	TRIAL PIT TERMINATED AT 2.20m	2.20	34.75	<u>1995</u>	•					
		-								
Кеу	Notes	Title			Dimensio					
D Small Disturbed Sample B Bulk Disturbed Sample ES Environmental Sample W Water Sample C Core sample UT Undisturbed Sample	Trial pit terminated due to instability of pit walls. Collapse of trial pit sides from 0m to 2.2m depth widening trial pit by m 0.5m on northern side.	Trial pit reco Method 13T tracked			0.70m x 2 Logged by DN			t e(s) ′01/2018	- 05/01/	2018
S Standard Penetration Test C Standard Penetration Test (solid cone)	Groundwater observations Seepage observed at 1.55m (35.4m mAOD) depth, filling trial pit at an approximate rate of 10 litres per minute.	Level (m OD) 36.95			Compiled KM	by		eet numb		
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Co-ordinate 288812mE,			Checked I	у		T	P12	

soiltechnics

	STRATA				WATER	IN SITU	TESTING		SAMPLING	3
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Grass onto very soft red brown (MADE GROUND)	slightly gravelly very sandy CLAY. Gravel consists of fine to medium sub-angular sandstone.							0.30 0.30		D D
Loose red brown slightly gravel (WATCOMBE BRECCIA FORMAT	ly clayey fine to coarse SAND. Gravel consists of fine to coarse sub-angular sandstone and breccia. ION)	- 0.80 	39.20					0.80 0.80		D
		-						1.40 1.40		D D
		- - - - - -								
	CONTINUED ON NEXT SHEET	-			-					
Кеу	Notes	Title			Dimensio	ns (w x l)				
D Small Disturbed Sample B Bulk Disturbed Sample	Collapse of trial pit sides from 0m to 2.1m widening trial pit by 0.6m.	Trial pit reco	ord		1.00m x 2	.00m				
ES Environmental Sample W Water Sample C Core sample		Method 13T tracked	excavator		Logged by DN	,		:e(s) 01/2018	- 05/01/	2018
UT Undisturbed Sample S Standard Penetration Test C Standard Penetration Test (solid cone)	Groundwater observations Seepage observed at 1.4m (38.6m mAOD) depth, at very slow rate. Seepage observed at 2.1m (37.9m mAOD) depth at an approximate rate of 15	Level (m OI 40.00			Compiled KM	by	She	et numb	er	
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	litres per minute.	Co-ordinate 288802mE,			Checked b	ру			P13	
Report ref: STP4262-G01	1			1			I		Revis	ion: 0

soiltechnics

environmental and geotechnical consultants

	STRATA		DEPTH REDUCED LEGEND		WATER	IN SITU T	ESTING		SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Loose red brown slightly gravelly (WATCOMBE BRECCIA FORMATIC	/ clayey fine to coarse SAND. Gravel consists of fine to coarse sub-angular sandstone and breccia. ON)	-								
Loose to medium dense red brov (WATCOMBE BRECCIA FORMATIC	wn slightly clayey very gravelly fine to coarse SAND. Gravel consists of fine to coarse sub-angular sandstone and breccia. ON)	3.20	36.80					3.50		D
	TRIAL PIT TERMINATED AT 3.60m	3.60	36.40					3.50		D
		-								
		_								
		_								
		-								
		-								
		-								
	1									
Key D Small Disturbed Sample R Bulk Disturbed Cample	Notes Collapse of trial pit sides from 0m to 2.1m widening trial pit by 0.6m.	Title Trial pit reco	ord		Dimension 1.00m x 2.					
B Bulk Disturbed Sample ES Environmental Sample W Water Sample		Method			Logged by			nte(s)		
C Core sample UT Undisturbed Sample	Groundwater observations	13T tracked			DN Compiled	by		/01/2018		2018

Seepage observed at 1.4m (38.6m mAOD) depth, at very slow rate. Seepage observed at 2.1m (37.9m mAOD) depth at an approximate rate of 15

KМ

40.00

litres per minute.

S Standard Penetration Test C Standard Penetration Test (solid cone)

PP Pocket Penetrometer test

PID Photo Ionisation Detector test

SV Shear Vane test

Sheet 2 of 2

soiltechnics

environmental and geotechnical consultants

	STRATA				WATER			CORING					SPT TI	STING		OTHER IN SI	TU TESTING		SAMPLING	
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	RUN NO.	CORE DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FRACTURE INDEX (%)	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Open hole.	3.00	33.20																	
	[Loose to medium dense] red brown slightly gravelly clayey fine to coarse SAND. Gravel consists of fine to medium sub-angular sandstone and breccia. (WATCOMBE BRECCIA FORMATION)		55.20			1	3.00 - 4.00	100	100	0								3.50		D
						2	4.00 - 5.50	53	53	0								4.80		D
	[Loose to medium dense] red brown slightly clayey gravelly fine to coarse SAND. Gravel consists of fine to medium sub-angular sandstone. (WATCOMBE BRECCIA FORMATION) //	6.20	30.00 29.40			3	5.50 - 7.00	87	57	14								6.40 6.80	7.00	D C
	Weak red brown poorly sorted BRECCIA fining upwards to a well sorted SANDSTONE with closely spaced bedding infilled with silt. Breccia consists of medium gravel sized clasts of sub-angular sandstone with a fine to coarse sand matrix. (WATCOMBE BRECCIA FORMATION)	7.45 8.20 8.50	28.00			4	7.00 - 8.50	97	97	79								7.10 8.25	7.41 8.50	c c
	gravel clasts with a fine to coarse sand matrix. (WATCOMBE BRECCIA FORMATION) Weak red poorly sorted BRECCIA. Breccia consists of fine to medium gravel clasts with a medium to coarse sand matrix.			· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		5	8.50 - 10.00	12	12	0										
	Weak red well sorted medium to coarse grained SANDSTONE. Poor recovery. (WATCOMBE BRECCIA FORMATION) Weak red moderately sorted BRECCIA. Breccia consists of medium to	10.00	26.20			6	10.00 - 11.50	13	13	0										

Кеу	Notes	Title		
D Small Disturbed Sample B Bulk Disturbed Sample	Percussive techniques used to drill from 0 to 3.8m.	Rotary core record		
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		Rotary core	DN	03/01/2018 - 04/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Groundwater measured at 1.0m (35.2m mAOD) during drilling and at 0.5m (35.7m mAOD) on completion of drilling. Water added to aid drilling	36.20	КМ	Sheet 1 of 2
PP Pocket Penetrometer test SV Shear Vane test	therefore water level may not be representative of groundwater conditions. Groundwater measured at 0.72m (35.48mAOD) following a purge of the borehole on a return monitoring visit completed on 09/02/2018.	Co-ordinates	Checked by	BH01
PID Photo Ionisation Detector test		288859mE, 66310mN		DIGI

Report ref: STP4262-G01

soiltechnics

WELL WATER DESCRIPTION DEPTH (m) REDUCED LEGEND LEGEND STRIKES RUN NO. CORE DEPTH (m) RCS (%) (%) FRACTURE (%) TYPE / (%) TYPE / (%)	CASING WATER DEPTH (m) LEVEL (m)	FROM (m) TO (m) TYF 12.35 12.60 C 13.20 D 13.80 14.05 C
coarse sized gravel clasts with a medium to coarse gravelly sand matrix. Poor recovery. (WATCOMBE BRECCIA FORMATION) Weak red brown poorly sorted BRECCIA fining upwards to a well sorted SANDSTONE with closely spaced bedding infilled with silt. Breccia consists of fine to medium gravel clasts with a fine to coarse sand matrix. (WATCOMBE BRECCIA FORMATION) between 11.6m and 11.65m depth, band of green yellow very poorly sorted BRECCIA. Weak red brown poorly sorted BRECCIA fining upwards to a well sorted SANDSTONE with closely spaced bedding infilled with silt. Breccia consists of fine to medium gravel clasts with a fine to coarse sand matrix. (WATCOMBE BRECCIA FORMATION) between 11.6m and 11.65m depth, band of green yellow very poorly sorted BRECCIA. Weak red brown poorly sorted BRECCIA fining upwards to a well sorted SANDSTONE with closely spaced bedding infilled with silt. Breccia consists of fine to medium gravel clasts with a fine to coarse sand matrix. (WATCOMBE BRECCIA FORMATION) 14.50 21.70		13.20 D
SANDSTONE with closely spaced bedding infilled with silt. Breccia consists of fine to medium gravel clasts with a fine to coarse sand matrix. (WATCOMBE BRECCIA FORMATION) between 116m and 11.65m depth, band of green yellow very poorly sorted BRECCIA. 8 13.00 - 14.50 53 53		
Weak red brown poorly sorted BRECCIA fining upwards to a well sorted 14.50 SANDSTONE with closely spaced bedding infilled with silt. Breccia consists 14.50 of fine to medium gravel clasts with a fine to coarse sand matrix. 21.70		
between 13.9m and 13.95m depth, band reduced green yellow well sorted fine to medium	1 1	

Кеу	Notes	Title		
D Small Disturbed Sample B Bulk Disturbed Sample	Percussive techniques used to drill from 0 to 3.8m.	Rotary core record		
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		Rotary core	DN	03/01/2018 - 04/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Groundwater measured at 1.0m (35.2m mAOD) during drilling and at 0.5m (35.7m mAOD) on completion of drilling. Water added to aid drilling	36.20	КМ	Sheet 2 of 2
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	therefore water level may not be representative of groundwater conditions. Groundwater measured at 0.72m (35.48mAOD) following a purge of the borehole on a return monitoring visit completed on 09/02/2018.	Co-ordinates 288859mE, 66310mN	Checked by	BH01
Report ref: STP4262-G01				Revision: 0

soiltechnics

	STRATA				WATER			CORING					SPT TI	STING		OTHER IN SI	TU TESTING		SAMPLING	i
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	RUN NO.	CORE DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FRACTURE INDEX (%)	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Open hole. Open hole. Weak to medium strength brown red poorly sorted thickly laminated BRECCIA. Breccia consists of medium sized gravel clasts with a medium to		1VL (m OD) 32.10					33					RESULT				RESULT			TYPE
							10.00 - 11.50		30	23										
	CONTINUED ON NEXT SHEET	11.50	27.60																	

Кеу	Notes	Title		
D Small Disturbed Sample B Bulk Disturbed Sample		Rotary core record		
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		Rotary core	DN	05/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Groundwater measured at 1.0m (38.1m mAOD) during drilling and 0.6m (38.5m mAOD) on completion of the borehole. Water added to aid drilling	39.10	КМ	Sheet 1 of 2
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	therefore water level may not be representative of groundwater conditions. Groundwater measured at 0.77m (38.33mAOD) following a purge of the borehole on a return monitoring visit completed on 09/02/2018.	Co-ordinates 288801mE, 66315mN	Checked by	BH02
Report ref: STP4262-G01		•	•	Revision:

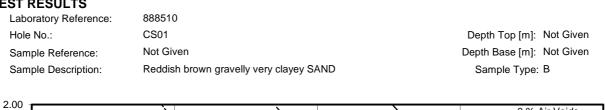
soiltechnics

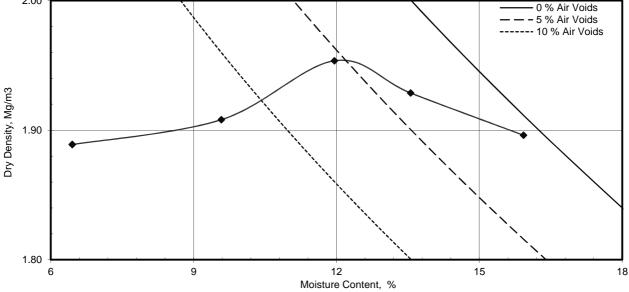
	STRATA			WATER			CORING					SPT T	ESTING		OTHER IN SI	TU TESTING	:	SAMPLING	i
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	STRIKES	RUN NO.	CORE DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FRACTURE INDEX (%)	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Weak to medium strength brown red well sorted fine to medium grained SANDSTONE with closely spaced bedding infilled with silt. (WATCOMBE BRECCIA FORMATION) Weak brownish red poorly sorted cross laminated BRECCIA. Breccia	12.00	27.10	$\overline{\mathbf{A}}$	4	11.50 - 13.00	54	54	54										
	sand matrix. (WATCOMBE BRECCIA FORMATION) Weak brownish red moderately sorted thinly laminated SANDSTONE with	13.00	26.10 25.70		5	13.00 - 14.20	77	66	45										
	 closely spaced bedding infilled with clayey sand. (WATCOMBE BRECCIA FORMATION) Weak to medium strength poorly sorted BRECCIA. Breccia consists of medium to coarse grained gravel clasts with a medium grained sand matrix. 		24.90	~															
	matrix. (WATCOMBE BRECCIA FORMATION) BOREHOLE TERMINATED AT 14.20m																		

Кеу	Notes	Title		
D Small Disturbed Sample B Bulk Disturbed Sample		Rotary core record		
ES Environmental Sample W Water Sample		Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample		Rotary core	DN	05/01/2018
S Standard Penetration Test	Groundwater observations	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Groundwater measured at 1.0m (38.1m mAOD) during drilling and 0.6m (38.5m mAOD) on completion of the borehole. Water added to aid drilling	39.10	KM	Sheet 2 of 2
PP Pocket Penetrometer test	therefore water level may not be representative of groundwater conditions. Groundwater measured at 0.77m (38.33mAOD) following a purge of the borehole on a return monitoring visit completed on 09/02/2018.	Co-ordinates	Checked by	DUO2
SV Shear Vane test PID Photo Ionisation Detector test	biencie on a return monitoring visit completed on 03/02/2010.	288801mE, 66315mN		BH02
Report ref: STP4262-G01			•	Revision: 0

TEST CERTIFICATE

Dry Density / Moisture Content Relationship Light Compaction


i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	Soiltechnics Limited Cedar Barn White Lodge Walgrave Northampton NN6 9PY	Client Reference: STP4262 Job Number: 18-72830 Date Sampled: Not Given Date Received: 15/01/2018 Date Tested: 23/01/2018
Contact: Site Name: Site Address:	Lauren Wenham Wickes Torquay Not Given	Sampled By: Not Given

TEST RESULTS

Maximum Dry Density	Mg/m³	1.95
As received Moisture Content	%	16
Particle Density - Assumed	Mg/m³	2.75
Material Retained on 20.0 mm Sieve	%	5
Material Retained on 37.5 mm Sieve	%	0
Samples Used		Composite specimens tested
Mould Type		1 Litre
Preparation		Material used was natural

Remarks:

Insufficient material - compacted in proctor mould

%

Approved:

Dariusz Piotrowski PL Laboratory Manager **Geotechnical Section**

Piotuli

Optimum Moisture Content

Mark Beastall

Signed:

Geotechnical **Commercial Manager**

12

M Beart

for and on behalf of i2 Analytical Ltd

Date Reported:

29/01/2018

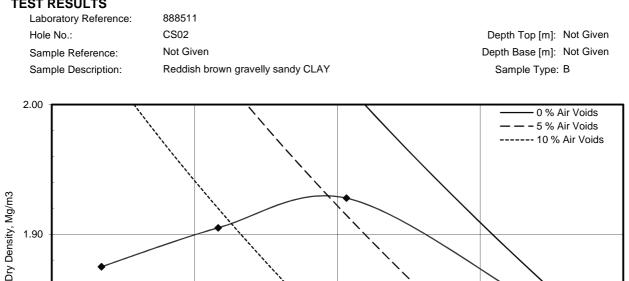
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1

TEST CERTIFICATE

Dry Density / Moisture Content Relationship Light Compaction

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS


16

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	Soiltechnics Limited Cedar Barn White Lodge Walgrave Northampton NN6 9PY	Client Reference: STP4262 Job Number: 18-72830 Date Sampled: Not Given Date Received: 15/01/2018 Date Tested: 23/01/2018
Contact: Site Name: Site Address:	Lauren Wenham Wickes Torquay Not Given	Sampled By: Not Given

TEST RESULTS

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	3
Particle Density - Assumed	Mg/m³	2.75
As received Moisture Content	%	17
Maximum Dry Density	Mg/m ³	1.93

13

Moisture Content, %

Remarks:

1.80

7

Approved:

Dariusz Piotrowski PL Laboratory Manager **Geotechnical Section**

Date Reported:

10

Signed:

Mark Beastall Geotechnical **Commercial Manager**

M. Bean

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

29/01/2018

19

			Dete	ern	nin		<u>TE</u> ion								_	str	ib	uti	io	<u>n</u>		i2 / 7 V Cro Wa	Vo oxle	ods ey (sho Gre	ts I en	Лea Вı	ısir	nes			rk			Analytical	2	
U TE	K A S		_																		_										_			Enviro	nmen	al Sci	ence
Clie		ddress		Sc Ce	oilte eda	echr r Ba		Lim			5137	'7:Pa	art 2	2:19	90,	cla	use	9.2				CI			efe Nu												
						e Lo rave	odge e	!															Da	te	Sar	npl	ed	: N	ot	Gi	ve	n					
_							pton			9P)	Y											I			Rec			-			-	-					
Site	ntact: Nan Add			W	icke		Nenl Torq en																		e T npl												
		ESUL	гs	110		-	oorat	tory	Re	fere	ence	ə:	88	85	10						S	Sam	ple	e R	efe	ren	се	: N	ot	Gi	ve	n					
Loc	ation		CS			Rec	ddisł	ר br	owr	ı gr	ave	lly v	/ery	/ cla	aye	y S	AN	ID					De	pth	ple To	p[m]	: N	ot								
Sup	plier		INOL	Giv		SIL	т							9	ANE	<u> </u>								RA\	Bas	se [m	. 11	Т								Ŧ
		CLAY	Fi	ne	M	Medi		С	oars	е		Fine			ediu		C	oars	se		Fine	•		1edi			Coa	irse		CO	BBI	LES		BOU	_DER	S	
	100 -											Γ									-		•	+					Π								
	90 -				Ш				\square															T		T		Ì		I							
	80 -				\square												Ϊ							T				İ	Π	T							
% E	70 ·								Ħ							/				╞				Ť													
assinę	60 - 50 -														7																						
age P	40 -																																				
Percentage Passing	30 -																																				
Ъ	20 -							_				_													_												
	10 -							_	\square			_			_	_																					-
	0 -											Ļ																									Ц
	0.0	001			0	0.01	1				().1			P	Parti	cle	1 Size	Э	mm				10						1	100	5				1	000
				evin	g			⊥	_			dim	enta	atio	n					Dry	Mas	ss o	fsa	amp	le [g]:							42	8			
	Р	article mm			% F	ase	sing		Ра	rticl m		ze		%	Pas	sing	g																				
		125 90		_		100 100		4	_											San Very				orti	ons								% c	dry n 0.00		5	
		75				100														Grav		a150	5											8.60			
		63				100														San	d												Ę	56.5	0		
		50 37.5				100							-							Fine	s <	0.06	53m	nm									3	34.9	0		
		28				100	C			_																											
		20 14		-		100 98							-					-		Gra D10		g A	nal	ysis	5			m	m					20			
	F	10		L		97							L					1		D60									m	L			().36			
		6.3			_	96		_₽					\vdash							D30									m	[
	\vdash	5 3.35		+		95 94		╉					+							D10 Unif		ity (Coe	effic	ient			m	m	┢							
		2		1	_	91		エ	_			_	1					1		Curv										Ĺ							
	⊢	1.18 0.6		+		87 72		╉					<u> </u>					-		Rem	nark	s															
	F	0.42		L		64														Prep			and	test	ing i	n ac	cor	dan	ce۱	with	n B	S137	7 un	less	note	d be	low
		0.3				56]																			
	_	0.212				50 45																															

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

Signed:

Mark Beastall Geotechnical Commercial Manager

M. Bearton

Date Reported:

29/01/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

TEST CERTIFICATE

Determination of uniaxial compression test on rock - summary of results

Tested in Accordance with International Society for Rock Mechanics, The complete ISRM suggested methods for Rock Characterization Testing and Monitoring, 2007

Client: Soiltechnics Limited Client Address: Cedar Barn White Lodge Walgrave Northampton, NN6 9PY Contact: Lauren Wenham Site Name: Wickes Torquay Site Address: Not Given

Client Reference: STP4262 Job Number: 18-72830 Date Sampled: 05/01/2018 Date Received: 15/01/2018 Date Tested: 25/01/2018 Sampled By: Not Given

i2 Analytical Ltd

7 Woodshots Meadow Croxley Green Business Park

Watford Herts WD18 8YS

Test Results

			Sample	9			Specim	en Dimer	nsions2	Bulk	Water	Uni	axial Com	pression	3	
Laboratory Reference	Hole No.	Reference	Depth	Depth Base [m]	Туре	Description	Dia.	Length	H/D	Density2	Content1	Condition	Stress Rate	Mode of failure	UCS	Remarks
			Top [m]	base [iii]			mm	mm		Mg/m3	%		MPa/s		MPa	
888504	BH01	Not Given	7.10	7.40	В	Reddish brown SANDSTONE	89.2	93.7	1.1	2.30	9.0	as received	0.1599	AC	2.3	
888505	BH01	Not Given	8.25	8.50	В	Reddish brown SANDSTONE	89.0	110.2	1.2	2.29	8.7	as received	0.1606	AC	2.5	
888506	BH01	Not Given	12.35	12.60	В	Reddish brown SANDSTONE	88.8	207.9	2.3	2.35	5.2	as received	0.1615	AC	5.7	
888507	BH01	Not Given	13.80	14.05	В	Reddish brown SANDSTONE	88.4	121.6	1.4	2.35	6.6	as received	0.1631	AC	4.0	
888508	BH02	Not Given	7.90	8.20	В	Reddish brown SANDSTONE	89.3	135.1	1.5	2.37	5.9	as received	0.1597	AC	2.4	
888509	BH02	Not Given	10.00	10.30	В	Reddish brown SANDSTONE	88.6	121.9	1.4	2.38	6.4	as received	0.1622	MS	4.0	

above notes apply unless annotated otherwise in the remarks

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 29/01/2018

Pistuli

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Plonierow 39, 41-711 Ruda Slaska, Poland." Signed:

Mark Beastall

Geotechnical

M. Bearton

Commercial Manager

	Determ			IFICATE	stic Limit	7 Woodsh Croxley G	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS					
U K A S TESTING	Tested in A	ccordance w	/ith BS1377-2:	1990: Clause 4.4	& 5: One Poin	t Method						
4041 Client: Client Address:	Cedar E White L Walgray	odge /e				Jol Date	Client Reference: STP4262 Job Number: 18-72886 Date Sampled: 05/01/2018 Date Received: 15/01/2018					
Contact: Site Name: Site Address:	Lauren	npton, NN6 Wenham Torquay en	3 9PY			Da	te Tested:	23/01/2018 Not Given				
TEST RESULT Description: Location: Sample Prepara	Reddish TP01	ı brown slig					Dept	nple Type: B h Top [m]: 0.90 Base [m]: Not G	iven			
As Received I	Moisture	Liqu	id Limit	Plastic	c Limit	Plasticity	Index	% Passing 4	-			
Content		Liqu	[%]	[%	6]	[%]	Index	BS Test S	-			
		Liqu			6]	-	Index	-	-			
<u>Content</u> 15 100 - 90 -			[%]	[%	6]	[%]	Index	BS Test S	-			
<u>Content</u> 15 100 - 90 - 80 -			[%]	[%	6]	[%]	Index	BS Test Si	-			
<u>Content</u> 15 100 - 90 -			[%]	[%	6]	[%]	Index	BS Test Si	-			
Content 15 100 - 90 - 80 - 70 - 60 -			[%]	[%	6]	[%] 17 CE	Index	BS Test Si	-			
Content 15 100 - 90 - 80 - 70 - 60 - 50 -			[%]		6] .1	[%] 17		BS Test Si	-			
Content 15 100 - 90 - 80 - 70 - 60 - 50 -			[%] 38	[%	6] .1	[%] 17 CE		BS Test Si	-			
Content 15 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 -			[%] 38	CH	6] .1 	[%] 17 CE		BS Test Si	-			
Content 15 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 -			[%] 38	CH	6] .1 	[%] 17 CE		BS Test Si	-			
Content 15 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 -			[%] 38	CH	6] .1 	[%] 17 CE		BS Test Si	-			

Liquid Limit Plasticity Clay L below 35 Low Silt I Medium 35 to 50 50 to 70 Н High Very high 70 to 90 V Е Extremely high exceeding 90 0 append to classification for organic material (eg CHO) Organic

Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

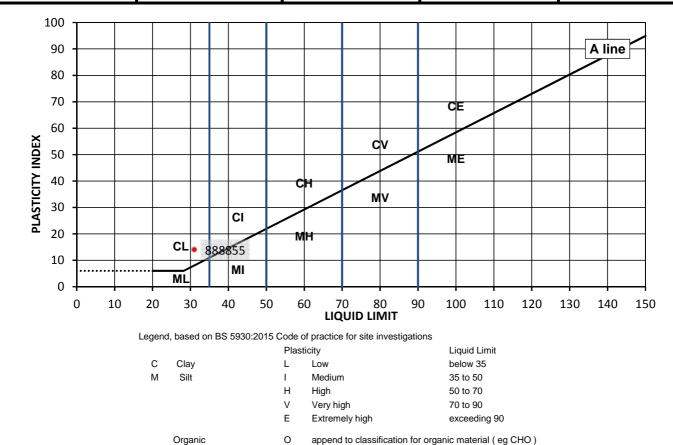
Putuli

29/01/2018

С

Μ

Signed:


M Bearta

Mark Beastall Geotechnical Commercial Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd **TEST CERTIFICATE** 7 Woodshots Meadow Croxley Green Business Park **Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method Soiltechnics Limited Client Reference: STP4262 Client: Cedar Barn Job Number: 18-72886 **Client Address:** White Lodge Date Sampled: 05/01/2018 Walgrave Date Received: 15/01/2018 Northampton, NN6 9PY Lauren Wenham Date Tested: 23/01/2018 Contact: Site Name: Wickes Torquay Sampled By: Not Given Site Address: Not Given 888855 **TEST RESULTS** Laboratory Reference: Not Given Sample Reference: Description: Yellowish brown slightly gravelly very sandy CLAY Sample Type: B TP12 Location: Depth Top [m]: 1.50 Sample Preparation: Depth Base [m]: Not Given Tested after >425um removed by hand

As Received Moisture Liquid Limit **Plastic Limit** Plasticity Index % Passing 425µm **BS Test Sieve** Content [%] [%] [%] [%] 14 31 17 98 20

Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section 29/01/2018 Date Reported:

Postali

Signed:

Mark Beastall Geotechnical Commercial Manager

M. Bearton

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

7 Woodshots Meadow Croxley Green Business Park **Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method Soiltechnics Limited Client Reference: STP4262 Client: Cedar Barn **Client Address:** White Lodge Walgrave Northampton, NN6 9PY Lauren Wenham Contact: Site Name: Wickes Torquay Not Given Site Address: 888856 **TEST RESULTS** Laboratory Reference:

As Received Moisture Liquid Limit **Plastic Limit** Plasticity Index Content [%] [%] [%] [%] 40 19 21 21 100 90 A line 80 70 CE 60 PLASTICITY INDEX cv 50 ME 40 С Mν 30 CI 20 888856 MH CL 10 MI M 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 LIQUID LIMIT Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity

Low

High

Medium

Very high

Extremely high

Page 1 of 1

L

н

V Е

0

Organic Remarks Approved:

С

Μ

Clav

Silt

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

Description:

Location:

Postali

29/01/2018

Mark Beastall Geotechnical Commercial

append to classification for organic material (eg CHO)

Signed:

Manager

Liquid Limit

below 35

35 to 50

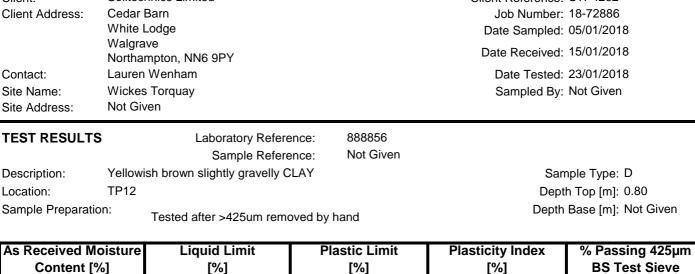
50 to 70

70 to 90

exceeding 90

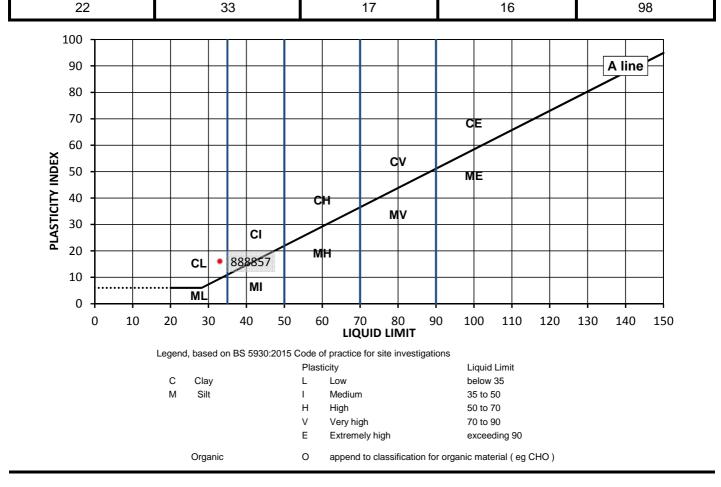
M. Bearton

for and on behalf of i2 Analytical Ltd


"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Depth Base [m]: Not Given

98


150

TEST CERTIFICATE

i2 Analytical Ltd

i2 Analytical Ltd **TEST CERTIFICATE** 7 Woodshots Meadow Croxley Green Business Park **Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method Soiltechnics Limited Client Reference: STP4262 Client: Cedar Barn Job Number: 18-72886 **Client Address:** White Lodge Date Sampled: 05/01/2018 Walgrave Date Received: 15/01/2018 Northampton, NN6 9PY Lauren Wenham Date Tested: 23/01/2018 Contact: Site Name: Wickes Torquay Sampled By: Not Given Not Given Site Address: 888857 **TEST RESULTS** Laboratory Reference: Not Given Sample Reference: Description: Reddish brown slightly gravelly very sandy CLAY Sample Type: B **TP09** Location: Depth Top [m]: 1.00 Sample Preparation: Depth Base [m]: Not Given Tested after >425um removed by hand As Received Moisture Liquid Limit **Plastic Limit** Plasticity Index % Passing 425µm **BS Test Sieve** Content [%] [%] [%] [%]

Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

Postali

29/01/2018

Signed:

M. Bearton

Mark Beastall Geotechnical Commercial Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

TEST CERTIFICATE

Summary of Classification Test Results

Client:	Soiltechnics Limited
Client Address:	Cedar Barn
	White Lodge
	Walgrave
	Northampton, NN6 9PY
Contact:	Lauren Wenham
Site Name:	Wickes Torquay
Site Address:	Not Given

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: STP4262 Job Number: 18-72886 Date Sampled: 05/01/2018 Date Received: 15/01/2018 Date Tested: 23/01/2018 Sampled By: Not Given

Test results

			Sar	nple			De	nsity	M/C		-	PD		
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soil Description	bulk dry			% Passing 425um	LL	PL	PI	
							Mg/m3	Mg/m3	%	%	%	%	%	Mg/m3
888854	TP01	Not Given	0.90	Not Given	В	Reddish brown slightly gravelly slightly sandy CLAY			15	57	38	21	17	
888862	TP02	Not Given	1.50	Not Given	В	Reddish brown slightly gravelly slightly sandy CLAY			17					
888861	TP02	Not Given	2.10	Not Given	В	Reddish brown slightly gravelly slightly sandy CLAY			12					
888863	TP02	Not Given	2.60	Not Given	В	Reddish brown slightly gravelly slightly sandy CLAY			14					
888871	TP03	Not Given	1.20	Not Given	В	Reddish brown slightly gravelly slightly sandy CLAY			17					
888864	TP05	Not Given	1.80	Not Given	В	Reddish brown slightly gravelly slightly sandy CLAY			15					
888865	TP06	Not Given	0.60	Not Given	В	Reddish brown slightly gravelly CLAY			17					
888869	TP08	Not Given	0.60	Not Given	D	Reddish brown slightly gravelly CLAY			19					
888870	TP08	Not Given	1.20	1.50	В	Reddish brown slightly gravelly CLAY			16					
888857	TP09	Not Given	1.00	Not Given	В	Reddish brown slightly gravelly very sandy CLAY			22	98	33	17	16	

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 29/01/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The nanalysis was carried out at 12 Analytical Limited, u. Pionierow 39, 41-711 Ruda Slaska, Poland."

Piotuli

Signed:

Mark Beastall

M. Bearton

Geotechnical Commercial Manager

TEST CERTIFICATE

Summary of Classification Test Results

Client:	Soiltechnics Limited
Client Address:	Cedar Barn
	White Lodge
	Walgrave
	Northampton, NN6 9
Contact:	Lauren Wenham
Site Name:	Wickes Torquay
Site Address:	Not Given

9PY

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: STP4262 Job Number: 18-72886 Date Sampled: 05/01/2018 Date Received: 15/01/2018 Date Tested: Sampled By: Not Given

Test results

			Sar	mple			De	nsity	M/C			PD		
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soil Description	bulk Mg/m3	dry Mg/m3	W/C	% Passing 425um	LL %	PL %	PI %	Mg/m3
888867	TP11	Not Given	0.80	Not Given	D	Reddish brown slightly gravelly CLAY	g.n.o	niginio	16	70	70		~~~~	
888868	TP11	Not Given	1.30	Not Given	D	Reddish brown slightly gravelly CLAY			17					
888856	TP12	Not Given	0.80	Not Given	D	Yellowish brown slightly gravelly CLAY			21	98	40	19	21	
888855	TP12	Not Given	1.50	Not Given	В	Yellowish brown slightly gravelly very sandy CLAY			20	98	31	17	14	
888866	TP13	Not Given	0.30	Not Given	D	Reddish brown slightly gravelly CLAY			19					

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 29/01/2018

*Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruds Slask, Poland."

Piotuli

Signed:

Mark Beastall

M. Bearton

Geotechnical Commercial Manager

ddress: : me: dress: ESULTS description	Soiltechnics Lir Cedar Barn White Lodge Walgrave Northampton, N Lauren Wenha Wickes Torqua Not Given	nited NN6 9PY m	rt 2:1990, clause 9.2	Job Number: 18- Date Sampled: 05/	72886 01/2018	Environmental Science					
me: dress: ESULTS	Lauren Wenha Wickes Torqua Not Given	m		Date Received: 15/	Client Reference: STP4262 Job Number: 18-72886 Date Sampled: 05/01/2018						
			Date Received: 15/01/2018 Date Tested: 23/01/2018 Sampled By: Not Given								
n: TP1 r: Not	: Reddish b	,	888858 ery clayey SAND	Sample Reference: Not Sample Type: B Depth Top [m]: 1.6 Depth Base [m]: 1.9	0						
CLAY	SILT ne Medium	Coarse Fine	SAND Medium Coarse	GRAVEL Fine Medium Coarse	COBBLES	BOULDERS					
001		0.1		10 mm Dry Mass of sample [g]:	100	1000					
mm	Ů	mm	% Passing	Sample Proportions	0	6 dry mass					
90	100			Very coarse	· · · · · ·	0.00					
75	100			Gravel		12.70					
63				Sand		63.20					
				Fines <0.063mm		24.10					
28	100					20					
20	100			Grading Analysis							
14	99					20					
						0.567 0.0924					
				B / 4		0.0924					
2	87			Curvature Coefficient							
1.18	78										
0.6											
				Preparation and testing in accordance	with BS1377	' unless noted below					
0.212	37										
0.063	24										
	CLAY Fit Image: Classifier of the state of the stat	CLAY SILT Fine Medium Image: Sile of the stress of the	CLAY SILT Coarse Fine Image: Sile of the second secon	CLAY SILT SAND Fine Medium Coarse Fine Medium Coarse Image: I	Not Given Depth Base [m]: 1.9 CLAY SILT SAND GRAVEL Fine Medium Coarse Fine GRAVEL Image: Classing in the image	Not Given Depth Base [m]: 1.90 CLAY SILT SAND GRAVEL Coll Coll Coll Image: Class of the second se					

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

Date Reported:

29/01/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Mark Beastall Geotechnical Commercial Manager

M. Bearton

		Dete		6T CERTIFI of Particle	<u>CATE</u> Size Distributior							
4 Clie	KAS 1041	Τe	sted in Accordar Soiltechnics L		Part 2:1990, clause 9.2	Client Reference: ST	Environmental Science					
		dress:	Cedar Barn White Lodge Walgrave			Job Number: 18-72886 Date Sampled: 05/01/2018 Date Received: 15/01/2018 Date Tested: 23/01/2018 Sampled By: Not Given						
	ntact: e Nam	e:	Northampton, Lauren Wenh Wickes Torqu	am								
TES Sar		SULTS	Reddish	ory Reference: brown very gra	888859 velly very clayey SAND	Sample Reference: Not Sample Type: B Depth Top [m]: 1.8						
	oplier:		Given			Depth Base [m]: Not						
		CLAY	SILT e Medium	Coarse Fine	SAND Medium Coarse	GRAVEL Fine Medium Coarse	COBBLES BOULDERS					
	100 90											
	80 -											
% D	70 - 60 -											
Passin	50 -											
Percentage Passing	40											
Perc	30 -											
	20 - 10 -											
	0.00	01	0.01	0.1	1	10	100 1000					
		Sie	ving	Sedin		nm Dry Mass of sample [g]:	1030					
	Pa	article Size mm	% Passing	Particle Size mm	% Passing							
		125	100			Sample Proportions	% dry mass					
						Very coarse	0.00					
		90 75	100				20.00					
		75 63	100 100 100			Gravel Sand	20.00 55.20					
		75 63 50	100 100 100			Gravel Sand	55.20					
		75 63	100 100			Gravel						
		75 63 50 37.5 28 20	100 100 100 100 100 100			Gravel Sand Fines <0.063mm Grading Analysis	55.20 24.80					
		75 63 50 37.5 28 20 14	100 100 100 100 100 100 98			Gravel Sand Fines <0.063mm Grading Analysis D100 mm	55.20 24.80 20					
		75 63 50 37.5 28 20	100 100 100 100 100 100			Gravel Sand Fines <0.063mm Grading Analysis	55.20 24.80 20					
		75 63 50 37.5 28 20 14 10 6.3 5	100 100 100 100 100 98 95 90 85			Gravel Sand Fines <0.063mm Grading Analysis D100 mm D60 mm D30 mm	24.80 20 0.709 0.0904					
		75 63 50 37.5 28 20 14 10 6.3 5 3.35	100 100 100 100 100 98 95 90 85 82			Gravel Sand Fines <0.063mm Grading Analysis D100 mm D60 mm D30 mm D10 mm Jniformity Coefficient	55.20 24.80 20 0.709 0.0904					
		75 63 50 37.5 28 20 14 10 6.3 5	100 100 100 100 100 98 95 90 85			Gravel Sand Fines <0.063mm Grading Analysis D100 mm D60 mm D30 mm	55.20 24.80 20 0.709 0.0904					
		75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6	100 100 100 100 98 95 90 85 82 80 70 57			Gravel Sand Fines <0.063mm Grading Analysis D100 mm D60 mm D30 mm D10 mm Uniformity Coefficient Curvature Coefficient Remarks	55.20 24.80 20 0.709 0.0904					
		75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425	100 100 100 100 100 98 95 90 85 82 80 70 57 51			Gravel Sand Fines <0.063mm Grading Analysis D100 mm D60 mm D30 mm D10 mm Uniformity Coefficient Curvature Coefficient	55.20 24.80 20 0.709 0.0904					
		75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6	100 100 100 100 98 95 90 85 82 80 70 57			Gravel Sand Fines <0.063mm Grading Analysis D100 mm D60 mm D30 mm D10 mm Uniformity Coefficient Curvature Coefficient Remarks	55.20 24.80 20 0.709 0.0904					
		75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3	100 100 100 100 100 98 95 90 85 82 80 70 57 51 46			Gravel Sand Fines <0.063mm Grading Analysis D100 mm D60 mm D30 mm D10 mm Uniformity Coefficient Curvature Coefficient Remarks	55.20 24.80 20 0.709 0.0904					

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

Date Reported:

29/01/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Mark Beastall Geotechnical Commercial Manager

M. Bearton

for and on behalf of i2 Analytical Ltd

GF 100.8

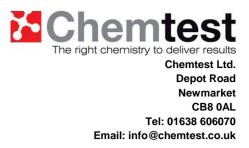
Contac Site Na Site Ac TEST I Sample Locatic Supplie 100 90 80 70 80 80 80 80 80 80	Address ct: ame: ddress: RESUL e descri on: er: <u>CLAY</u>	S: TS	Reddi Given	s Limited Je on, NN6 9P nham rquay atory Refer sh brown v	Y ence:	888 elly \	860	clayey		San D	lient Reference: S Job Number: 18 Date Sampled: 05 Date Received: 15 Date Tested: 23 Sampled By: No Sample Reference: No Sample Type: B Depth Top [m]: 1. Depth Base [m]: No GRAVEL Medium Coarse	3-72886 5/01/2018 5/01/2018 3/01/2018 ot Given ot Given 20	BOULDERS
Contac Site Na Site Ac TEST I Sample Locatic Supplie 100 90 80 70 %	ct: ame: ddress: RESUL e descri on: er: CLAY	rs ption: TP07 Not C	White Lodg Walgrave Northampto Lauren We Wickes Tor Not Given Labora Reddi Given	je on, NN6 9P nham rquay atory Refer sh brown v	ence: ery grave	elly v	Very o			San) [Date Sampled: 05 Date Received: 15 Date Tested: 23 Sampled By: No nople Reference: No Sample Type: B Depth Top [m]: 1. Depth Base [m]: No GRAVEL	5/01/2018 5/01/2018 3/01/2018 ot Given ot Given 20 ot Given	BOULDERS
Site Na Site Ac TEST I Sample Locatic Supplie 100 90 80 70 %	ame: ddress: RESUL e descri on: er: CLAY	TS ption: TP07 Not C	Northampto Lauren We Wickes Tor Not Given Labora Reddi Given	nham rquay atory Refer sh brown v	ence: ery grave	elly v	Very o			San) [Date Tested: 23 Sampled By: No nple Reference: No Sample Type: B Depth Top [m]: 1. Depth Base [m]: No GRAVEL	3/01/2018 ot Given ot Given 20 ot Given	BOULDERS
TEST I Sample Locatic Supplie 100 90 80 80 70	RESUL ⁻ e descri on: er: CLAY	TS ption: TP07 Not C	Labora Reddia Given	sh brown v	ery grave	elly v	Very o				Sample Type: B Depth Top [m]: 1. Depth Base [m]: No GRAVEL	20 ot Given	BOULDERS
90 80 %		Fine		Coarse	Fine	1			Oarse			COBBLES	BOULDERS
90 80 %)								Jui 30	Fine		1	
70 %													
%)												
de Lassin 50 50									1				
e B								1					
ହୁଁ 40	,												
Бола 1901 2001 2001 2001) —												
20													
10 0													
	0.001		0.01		0.1		P	article	1 Size	mm	10	100	1000
F	Dertiale	Siev	ving	Dertic	Sedime	ntat	ion			Dry Mass of	of sample [g]:		804
	Particle mm		% Passing		cle Size nm	%	6 Pas	sing					
F	125 90		100 100						1	Sample Pr Very coars	roportions	c	6 dry mass 0.00
	75		100						-	Gravel	e		20.60
	63		100						1	Sand			40.20
	50 37.5	;	100 100						-	Fines <0.0	63mm	-	39.20
	28		100										
	20 14		96 96						-	Grading A D100	•	~	28
	14		90						1	D100	mı mı		0.613
F	6.3		91						1	D30	mi		
⊢	5 3.35	;	86 81						-	D10 Uniformity	Coefficient	m	
Ľ	2		79						1		Coefficient		
F	1.18 0.6	;	71 60						4	Remarks			
	0.6	5	55				_				and testing in accordance	ce with BS137	7 unless noted below
	0.3		52						1		-		
\vdash	0.212		49 45	_									
	0.063		39						1				

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

Date Reported:

29/01/2018


"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Mark Beastall Geotechnical Commercial Manager

M. Bearton

Report No.:	18-01344-1		
Initial Date of Issue:	25-Jan-2018		
Client	Soiltechnics Limited		
Client Address:	Cedar Barn White Lodge Walgrave Northampton Northamptonshire NN6 9PY		
Contact(s):	Rachel Brown		
Project	STP4262 Wickes Torquay		
Quotation No.:		Date Received:	17-Jan-2018
Order No.:	POR002219	Date Instructed:	17-Jan-2018
No. of Samples:	17		
Turnaround (Wkdays):	7	Results Due:	25-Jan-2018
Date Approved:	25-Jan-2018		
Approved By:			
Ulip Mary	T		
Detailer	Chung Llaw (a) Laboratory Managar		

Details:

Glynn Harvey, Laboratory Manager

The right chemistry to deliver results Project: STP4262 Wickes Torquay

Results - Soil

Client: Soiltechnics Limited		Che	mtest J	ob No.:	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344
Quotation No.:	(Chemte	est Sam	ple ID.:	564989	564990	564991	564992	564993	564994	564996	564997	564998
Order No.: POR002219		Clie	nt Samp	le Ref.:	BH01	BH01	TP01	TP02	TP04	TP04	TP05	TP06	TP06
		Cli	ent Sam		BH0113.202-	BH014.801-	TP010.101-	TP020.201-	TP040.201-	TP041.501-	TP050.201-	TP060.201-032	TP060.701-
		Cir		•	001	082	001	800	017	020	024	1F000.201-032	033
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	13.20	4.80	0.10	0.20	0.20	1.50	0.20	0.20	0.70
			Date Sa	ampled:	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018
			Asbest	os Lab:			COVENTRY	COVENTRY			COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A			-	-			-		-
Asbestos Identification	U	2192	%	0.001			No Asbestos Detected	No Asbestos Detected			No Asbestos Detected		No Asbestos Detected
Moisture	Ν	2030	%	0.020	6.4	12		12	31	12		12	
Soil Colour	Ν	2040		N/A	Red	Brown		Red	Red	Red		Brown	
Other Material	Ν	2040		N/A	Stones	Stones		Stones	Roots	Stones		Stones, Roots	
Soil Texture	Ν	2040		N/A	Sand	Sand		Clay	Clay	Sand		Clay	
рН	М	2010		N/A	8.8	8.6		8.2	5.3	6.5		8.3	
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40				0.81	0.44			0.69	
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	< 0.010				< 0.010			
Total Sulphur	М	2175	%	0.010	0.026	0.036				0.042			
Cyanide (Complex)	М	2300	mg/kg	0.50				< 0.50	< 0.50			< 0.50	
Cyanide (Free)	М	2300	mg/kg	0.50				< 0.50	< 0.50			< 0.50	
Cyanide (Total)	М	2300	mg/kg	0.50				< 0.50	0.50			< 0.50	
Sulphate (Acid Soluble)	М	2430	%	0.010	< 0.010	< 0.010				< 0.010			
Arsenic	М	2450	mg/kg	1.0				15	13			28	
Beryllium	U	2450	mg/kg	1.0				1.6	< 1.0			< 1.0	
Cadmium	М	2450	mg/kg	0.10				1.0	0.41			0.40	
Chromium	М	2450	mg/kg	1.0				31	28			18	
Copper	М	2450	mg/kg	0.50				7.2	14			13	
Mercury	М	2450	mg/kg	0.10				< 0.10	0.43			0.15	
Nickel	М	2450	mg/kg	0.50				26	17			14	
Lead	М	2450	mg/kg	0.50				29	90			200	
Selenium	М	2450	mg/kg	0.20				< 0.20	0.31			< 0.20	
Vanadium	U	2450	mg/kg	5.0				28	37			20	
Zinc	М	2450	mg/kg	0.50				180	150			100	
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50				< 0.50	< 0.50			< 0.50	
Organic Matter	М	2625	%	0.40				< 0.40	4.8			1.3	
Total Organic Carbon	М	2625	%	0.20									
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	0.010									
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	0.010									
Aliphatic TPH >C8-C10	Ν	2680	mg/kg	0.10									
Aliphatic TPH >C10-C12	Ν	2680	mg/kg	0.10									
Aliphatic TPH >C12-C16	Ν	2680	mg/kg										
Aliphatic TPH >C16-C21	Ν	2680	mg/kg	0.10									
Aliphatic TPH >C21-C35	Ν	2680	mg/kg	0.10									

Chemtest The right chemistry to deliver results Project: STP4262 Wickes Torquay

Results - Soil

Client: Soiltechnics Limited		Chen	ntest Jo	ob No.:	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344
Quotation No.:		Chemtes	st Sam	ple ID.:	564989	564990	564991	564992	564993	564994	564996	564997	564998
Order No.: POR002219		Clien	t Samp	le Ref.:	BH01	BH01	TP01	TP02	TP04	TP04	TP05	TP06	TP06
					BH0113.202-	BH014.801-	TP010.101-	TP020.201-	TP040.201-	TP041.501-	TP050.201-	TD000 004 000	TP060.701-
		Cile	ent Sam	pie ID.:	001	082	001	008	017	020	024	TP060.201-032	033
			Sampl	e Type:	SOIL	SOIL							
		٦	Top Dep	oth (m):		4.80	0.10	0.20	0.20	1.50	0.20	0.20	0.70
		[Date Sa	ampled:	04-Jan-2018	04-Jan-2018							
			Asbest	os Lab:			COVENTRY	COVENTRY			COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD									
Aliphatic TPH >C35-C44	N	2680	mg/kg	0.10									
Total Aliphatic Hydrocarbons	N		mg/kg										
Aromatic TPH >C5-C7	N	2680	mg/kg	0.010									
Aromatic TPH >C7-C8	N	_		0.010									
Aromatic TPH >C8-C10	N	2680	mg/kg	0.10									
Aromatic TPH >C10-C12	N		mg/kg	0.10									
Aromatic TPH >C12-C16	N	-	mg/kg	0.10									
Aromatic TPH >C16-C21	N		mg/kg	0.10									
Aromatic TPH >C21-C35	N		mg/kg	0.10									
Aromatic TPH >C35-C44	N		mg/kg	0.10									
Total Aromatic Hydrocarbons	N	-	mg/kg	1.0									
Total Petroleum Hydrocarbons	N		mg/kg	2.0									
Dibutyl Tin	N		µg/kg	10									
Tetrabutyl Tin	N		µg/kg	10									
Tributyl Tin	N	2730	µg/kg	10									
Triphenyl Tin	N	2730	µg/kg	10									
Tetraethyl Lead	N		µg/kg	10									
Tetramethyl Lead	N		µg/kg	10									
Benzene	М		µg/kg	1.0									
Toluene	М		µg/kg	1.0									
Ethylbenzene	М		µg/kg	1.0									
m & p-Xylene	М		µg/kg	1.0									
o-Xylene	М		µg/kg	1.0									
Naphthalene	М		mg/kg	0.10				< 0.10	< 0.10			< 0.10	
Acenaphthylene	N		mg/kg	0.10				< 0.10	< 0.10			< 0.10	
Acenaphthene	М		mg/kg	0.10				< 0.10	< 0.10			< 0.10	
Fluorene	М	-	mg/kg	0.10				< 0.10	< 0.10			< 0.10	
Phenanthrene	М	2800	mg/kg	0.10				< 0.10	< 0.10			0.44	
Anthracene	M		mg/kg	0.10				< 0.10	< 0.10			0.11	
Fluoranthene	M		mg/kg	0.10			1	< 0.10	< 0.10			1.9	
Pyrene	M		mg/kg	0.10			1	< 0.10	< 0.10			1.6	
Benzo[a]anthracene	M	_	mg/kg	0.10				< 0.10	< 0.10			0.68	
Chrysene	M	-	mg/kg	0.10				< 0.10	< 0.10			0.67	
Benzo[b]fluoranthene	M		mg/kg				1	< 0.10	< 0.10			0.65	
Benzo[k]fluoranthene	M		mg/kg	0.10			1	< 0.10	< 0.10			0.17	
Benzo[a]pyrene	M	_	mg/kg	0.10			1	< 0.10	< 0.10			0.57	
Indeno(1,2,3-c,d)Pyrene	M		mg/kg	0.10			1	< 0.10	< 0.10			0.26	

<u>Results - Soil</u>

Client: Soiltechnics Limited		Che	ntest Jo	ob No.:	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344
Quotation No.:	(Chemte	st Sam	ole ID.:	564989	564990	564991	564992	564993	564994	564996	564997	564998
Order No.: POR002219		Clie	nt Samp	le Ref.:	BH01	BH01	TP01	TP02	TP04	TP04	TP05	TP06	TP06
	Client Sample ID.:		BH0113.202- 001	BH014.801- 082	TP010.101- 001	TP020.201- 008	TP040.201- 017	TP041.501- 020	TP050.201- 024	TP060.201-032	TP060.701- 033		
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	13.20	4.80	0.10	0.20	0.20	1.50	0.20	0.20	0.70
			Date Sa	mpled:	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018
			Asbest	os Lab:			COVENTRY	COVENTRY			COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD									
Dibenz(a,h)Anthracene	Ν	2800	mg/kg	0.10				< 0.10	< 0.10			< 0.10	
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10				< 0.10	< 0.10			0.26	
Total Of 16 PAH's	Ν	2800	mg/kg	2.0				< 2.0	< 2.0			7.3	
Total Phenols	М	2920	mg/kg	0.30				< 0.30	< 0.30			< 0.30	

Chemtest The right chemistry to deliver results

<u>Results - Soil</u>

Drojoot	STP4262	Wiekee	Torqual
FIOJECI.	3174202	WICKes	Torquay

Client: Soiltechnics Limited		Che	mtest J	ob No.:	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344
Quotation No.:		Chemte	est Sam	ple ID.:	564999	565000	565001	565002	565003	565004
Order No.: POR002219		Clie	nt Samp	le Ref.:	TP07	TP07	TP08	TP09	TP10	TP13
		Cli	ent Sam	ple ID.:	TP070.201-070	TP070.501- 071	TP080.301- 076	TP090.201-037	TP100.401- 041	TP130.301- 058
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De		0.20	0.50	0.30	0.20	0.40	0.30
			Date Sa		04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018
		-		os Lab:		COVENTRY				
Determinand	Accred.	SOP	Units							
АСМ Туре	U	2192		N/A		-				
Asbestos Identification	U	2192	%	0.001		No Asbestos Detected				
Moisture	Ν	2030	%	0.020	7.9		18	15	17	14
Soil Colour	Ν	2040		N/A	Brown, Brown			Red		Red
Other Material	N	2040		N/A	Stones, Roots			Stones, Roots		Stones
Soil Texture	Ν	2040		N/A	Sand			Clay		Clay
pН	М	2010		N/A	9.3			7.0		6.5
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.64			0.43		
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010						< 0.010
Total Sulphur	М	2175	%	0.010						0.037
Cyanide (Complex)	М	2300	mg/kg	0.50	< 0.50			< 0.50		
Cyanide (Free)	М	2300	mg/kg	0.50	< 0.50			< 0.50		
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50			< 0.50		
Sulphate (Acid Soluble)	М	2430	%	0.010						< 0.010
Arsenic	М	2450	mg/kg	1.0	23			14		
Beryllium	U	2450	mg/kg	1.0	< 1.0			< 1.0		
Cadmium	М	2450	mg/kg	0.10	0.58			0.34		
Chromium	М	2450	mg/kg	1.0	25			28		
Copper	M	2450	mg/kg	0.50	11			5.7		
Mercury	M	2450	mg/kg	0.10	0.10			< 0.10		
Nickel	М	2450	mg/kg	0.50	20			15		
Lead	M	2450	mg/kg	0.50	34			25		
Selenium	М	2450	mg/kg	0.20	< 0.20			< 0.20		
Vanadium	U	2450	mg/kg	5.0	32			35		
Zinc	М	2450	mg/kg	0.50	110			110		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50			< 0.50		
Organic Matter	M	2625	%	0.40	2.4		1.1	0.83		
Total Organic Carbon	M	2625	%	0.20			0.66			
Aliphatic TPH >C5-C6	N	2680	mg/kg				< 0.010			
Aliphatic TPH >C6-C8	N	2680	mg/kg				< 0.010			
Aliphatic TPH >C8-C10	N	2680	mg/kg				< 0.10			
Aliphatic TPH >C10-C12	N	2680	mg/kg				< 0.10			
Aliphatic TPH >C12-C16	N	2680	mg/kg				< 0.10			
Aliphatic TPH >C16-C21	N	2680	mg/kg	0.10			< 0.10			
Aliphatic TPH >C21-C35	N	2680	mg/kg	0.10			< 0.10			

The right chemistry to deliver results Project: STP4262 Wickes Torguay

Results - Soil

Client: Soiltechnics Limited		Che	mtest Jo	ob No.:	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344
Quotation No.:	(Chemte	est Sam	ple ID.:	564999	565000	565001	565002	565003	565004
Order No.: POR002219		Clie	nt Samp	le Ref.:	TP07	TP07	TP08	TP09	TP10	TP13
		Cli	ent Sam	ple ID.:	TP070.201-070	TP070.501- 071	TP080.301- 076	TP090.201-037	TP100.401- 041	TP130.301- 058
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.20	0.50	0.30	0.20	0.40	0.30
			Date Sa		04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018
			Asbest			COVENTRY				
Determinand	Accred.	SOP	Units							
Aliphatic TPH >C35-C44	N	2680	mg/kg				< 0.10			
Total Aliphatic Hydrocarbons	N	2680	mg/kg				< 1.0			
Aromatic TPH >C5-C7	N	2680	mg/kg	0.010			< 0.010			
Aromatic TPH >C7-C8	N	2680	mg/kg	0.010			< 0.010			
Aromatic TPH >C8-C10	N	2680	mg/kg	0.10			< 0.10			
Aromatic TPH >C10-C12	N	2680	mg/kg	0.10			< 0.10			
Aromatic TPH >C12-C16	N	2680	mg/kg	0.10			< 0.10			
Aromatic TPH >C16-C21	N	2680	mg/kg	0.10			< 0.10			
Aromatic TPH >C21-C35	N	2680	mg/kg	0.10			< 0.10			
Aromatic TPH >C35-C44	N	2680	mg/kg	0.10			< 0.10			
Total Aromatic Hydrocarbons	N	2680	mg/kg	1.0			< 1.0			
Total Petroleum Hydrocarbons	N	2680	mg/kg	2.0			< 2.0			
Dibutyl Tin	N	2730	µg/kg	10					< 10	
Tetrabutyl Tin	N	2730	µg/kg	10					< 10	
Tributyl Tin	N	2730	µg/kg	10					< 10	
Triphenyl Tin	N	2730	µg/kg	10					< 10	
Tetraethyl Lead	N	2760	µg/kg	10					< 10	
Tetramethyl Lead	N	2760	µg/kg	10					< 10	
Benzene	М	2760	µg/kg	1.0			< 1.0			
Toluene	М	2760	µg/kg	1.0			< 1.0			
Ethylbenzene	М	2760	µg/kg	1.0			< 1.0			
m & p-Xylene	М	2760	µg/kg	1.0			< 1.0			
o-Xylene	М	2760	µg/kg	1.0			< 1.0			
Naphthalene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10			< 0.10		
Acenaphthene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Fluorene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Phenanthrene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Anthracene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Fluoranthene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Pyrene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Benzo[a]anthracene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Chrysene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	< 0.10		l	< 0.10		
Benzo[a]pyrene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	< 0.10			< 0.10		

<u>Results - Soil</u>

Client: Soiltechnics Limited		Cher	mtest Jo	ob No.:	18-01344	18-01344	18-01344	18-01344	18-01344	18-01344
Quotation No.:	Chemtest Sample ID.:		564999	565000	565001	565002	565003	565004		
Order No.: POR002219		Clier	nt Samp	le Ref.:	TP07	TP07	TP08	TP09	TP10	TP13
		Cliv	ant Sam	nlo ID ·	TP070.201-070	TP070.501-	TP080.301-	TP090.201-037	TP100.401-	TP130.301-
		Cile	ent Sam	pie iD	1P070.201-070	071	076	1P090.201-037	041	058
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):		0.20	0.50	0.30	0.20	0.40	0.30	
			Date Sa	mpled:	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018	04-Jan-2018
			Asbest	os Lab:		COVENTRY				
Determinand	Accred.	SOP	Units	LOD						
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10			< 0.10		
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	< 0.10			< 0.10		
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0			< 2.0		
Total Phenols	М	2920	mg/kg	0.30	< 0.30			< 0.30		

Results - Water

Toject. OTT 4202 Wickes Tolyddy							
Client: Soiltechnics Limited		Chemtest Job No.:			18-01344		
Quotation No.:	(Chemte	ple ID.:	564995			
Order No.: POR002219		Clie	nt Samp	le Ref.:	TP04		
		Client Sample ID.:					
		WATER					
		3.40					
			Date Sa	ampled:	04-Jan-2018		
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010		N/A	7.5		
Ammoniacal Nitrogen	U	1220	mg/l	0.010	0.43		
Sulphate	U	1220	mg/l	1.0	24		
Magnesium	U	1415	mg/l	0.50	2.8		

Project: STP4262 Wickes Torquay

Chemtest Job No:	18-01344						Landfill V	aste Acceptant	e Criteria
Chemtest Sample ID:	565005							Limits	
Sample Ref:	WAC							Stable, Non-	
Sample ID:	WAC0.002-002							reactive	Hazardous
Top Depth(m):	0.00						Inert Waste	hazardous	Waste
Bottom Depth(m):							Landfill	waste in non-	Landfill
Sampling Date:	04-Jan-2018							hazardous	
Determinand	SOP	Accred.	Units					Landfill	
Total Organic Carbon	2625	М	%			0.58	3	5	6
Loss On Ignition	2610	М	%			2.5			10
Total BTEX	2760	М	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	М	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	Ν	mg/kg			< 2.0	100		
рН	2010	М				7.9		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg			0.051		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using BS	S EN 12457 at L/	S 10 I/kg
Arsenic	1450	U	0.0012	0.0016	< 0.050	< 0.050	0.5	2	25
Barium	1450	U	0.010	0.0063	< 0.50	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.00010	< 0.010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.0010	< 0.050	< 0.050	0.5	10	70
Copper	1450	U	< 0.0010	< 0.0010	< 0.050	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.00050	< 0.0010	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0025	0.0018	< 0.050	< 0.050	0.5	10	30
Nickel	1450	U	< 0.0010	< 0.0010	< 0.050	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.5	10	50
Antimony	1450	U	0.0067	0.0017	0.013	0.025	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.1	0.5	7
Zinc	1450	U	0.0023	0.0017	< 0.50	< 0.50	4	50	200
Chloride	1220	U	4.9	3.4	< 10	36	800	15000	25000
Fluoride	1220	U	0.14	0.13	< 1.0	1.3	10	150	500
Sulphate	1220	U	16	9.1	32	100	1000	20000	50000
Total Dissolved Solids	1020	Ν	160	70	320	840	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	8.1	6.4	< 50	67	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.175					
Moisture (%)	13					

Leachate Test Information							
Leachant volume 1st extract/l	0.324						
Leachant volume 2nd extract/l	1.400						
Eluant recovered from 1st extract/l	0.274						

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID
2730	Organo-Leads	Organo-Leads	Solvent extraction / GCMS detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.co.uk

Analysis of test data in relation to concentrations of inorganic chemical contaminants

Adopted Model:	Industrial/Commercial
Receptor:	Current and Proposed site users and Construction Operatives

Test procedure			Summ	ary of te	est data			Initial comparison	Outlier test					Normality t	est	UCL		
Contaminant	Guideline source	Guideline value mg/kg	No. of tests	Min.	Max. mg/kg	Mean mg/kg	No. of tests above guideline value	Initial screening	Pass outlier test?	Number of outliers	Location of outlier	Depth	Concentration mg/kg	Shapiro-Wilk Normality test	Probability plot test	Data normally distributed?	95% UCL of mean mg/kg	Contaminan
	ũ v						c a Ž		te B	ŹŎ	<u> </u>	Ō	6/ 16					
rsenic	S4UL	640	5	13.0	28.0	18.6	0	Mean value below guideline	У					normal				Arsenic
eryllium	S4UL	12	5	1.0	1.6	1.1	0	Mean value below guideline	n					not normal				Beryllium
oron	S4UL	240000	5	0.4	0.8	0.6	0	Mean value below guideline	У					normal				Boron
admium	S4UL	190	5	0.3	1.0	0.5	0	Mean value below guideline	n					normal				Cadmium
hromium (III)	S4UL	8600	5	18.0	31.0	26.0	0	Mean value below guideline	У					normal				Chromium (II
opper	S4UL	68000	5	5.7	14.0	10.2	0	Mean value below guideline	У					normal				Copper
yanide (total)	ATK	34	5	0.5	0.5	0.5	0	Mean value below guideline	У					not normal				Cyanide (tota
ead	C4SL (I)	1100	5	25.0	200.0	75.6	0	Mean value below guideline	n					normal				Lead
lercury#	S4UL	58	5	0.1	0.4	0.2	0	Mean value below guideline	n					not normal				Mercury#
lickel	S4UL	980	5	14.0	26.0	18.4	0	Mean value below guideline	У					normal				Nickel
elenium	S4UL	12000	5	0.2	0.3	0.2	0	Mean value below guideline	n					not normal				Selenium
/anadium	S4UL	9000	5	20.0	37.0	30.4	0	Mean value below guideline	У					normal				Vanadium
linc	S4UL	730000	5	100.0	180.0	130.0	0	Mean value below guideline	У					normal				Zinc

S4UL	Suitable for Use Level as published by LQM/CIEH
C4SL	Category 4 Screening Level
C4SL (lower) (upper)	Category 4 Screening Level for Lead at lower or upper bound of range
ATK	Soil Screening Value derived by Atkins
BPG5	Guideline from BPG Note 5 as published by Forest Research

#

Assumed to be elemental mercury as initial screening value

Title

Analysis of test data in relation to concentrations of inorganic chemical contaminants.

Report ref: STP4262-GO1 Revision O

Adopted model:	Industrial/Commercia
Receptor:	Current and Proposed site user and Construction Operatives

Test procedure			Summ	hary of t	test dat	а		Initial Screening	Outlier	test				Normality	est		UCL	
Contaminant	Guideline source	Guideline value* mg/kg	No. of tests	Min. mg/kg	Max. mg/kg	Mean mg/kg	No. of tests above guideline	Initial screening	Pass outlier test?	Number of outliers	Location of outlier	Depth	Concentration mg/kg	Shapiro-Wilk Normality test		olot Data normally distributed?	95% UCL of mean mg/kg	Contaminant
Acenaphthene	S4UL	84000	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Acenaphthene
Acenaphthylene	S4UL	83000	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Acenaphthylene
Anthracene	S4UL	520000	5	0.1	0.1	0.1	0	Mean value below guideline	n					not normal				Anthracene
Benzo(a)anthracene	S4UL	170	5	0.1	0.7	0.2	0	Mean value below guideline	n					not normal				Benzo(a)anthracene
Benzo(a)pyrene	S4UL	35	5	0.1	0.6	0.2	0	Mean value below guideline	n					not normal				Benzo(a)pyrene
Benzo(b)fluoranthene	S4UL	44	5	0.1	0.7	0.2	0	Mean value below guideline	n					not normal				Benzo(b)fluoranthe
Benzo(g,h,i)perylene	S4UL	3900	5	0.1	0.3	0.1	0	Mean value below guideline	n					not normal				Benzo(g,h,i)perylen
Benzo(k)fluoranthene	S4UL	1200	5	0.1	0.2	0.1	0	Mean value below guideline	n					not normal				Benzo(k)fluoranthe
Chrysene	S4UL	350	5	0.1	0.7	0.2	0	Mean value below guideline	n					not normal				Chrysene
Dibenzo(a,h)anthracene	S4UL	3.5	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Dibenzo(a,h)anthra
Fluoranthene	S4UL	23000	5	0.1	1.9	0.5	0	Mean value below guideline	n					not normal				Fluoranthene
Fluorene	S4UL	63000	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Fluorene
Indeno(1,2,3-cd)pyrene	S4UL	500	5	0.1	0.3	0.1	0	Mean value below guideline	n					not normal				Indeno(1,2,3-cd)pyr
Naphthalene	S4UL	190	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Naphthalene
Phenanthrene	S4UL	22000	5	0.1	0.4	0.2	0	Mean value below guideline	n					not normal				Phenanthrene
Phenols	S4UL	760	5	0.3	0.3	0.3	0	Mean value below guideline	У					not normal				Phenols
	S4UL	54000	5	0.1	1.6	0.4	0	Mean value below guideline	n					not normal				Pyrene

Notes

*

S4UL	Suitable for Use Level as published by LQM/CIEH
C4SL	Category 4 Screening Level
SGV	Soil Guideline Value as published by the Environment Agency 2009
SSV	Soil Screening Value as derived by Soiltechnics
ATK	Soil Screening Value derived by Atkins

Assuming a SOM of 1%

Title Analysis of test data in relation to concentrations organic chemical contaminants.

Report ref: STP4262-GO1 Revision O

of	Table number	
	2	
		March 2018 Appendix H

Analysis of test data in relation to concentrations of inorganic chemical contaminants

Receptor:		Vegetatio	n															
Test procedure			Summ	ary of te	est data			Initial comparison	Outlier te	st				Normality test			UCL	
Contaminant	deline rce	Guideline value mg/kg	No. of tests	Min. mg/kg	Max. mg/kg	Mean mg/kg	No. of tests above guideline value	Initial screening	Pass outlier test?	Number of outliers	Location of outlier	Depth	Concentration mg/kg	Shapiro-Wilk Normality test	Probability plot test	Data normally distributed?	95% UCL of mean mg/kg	Contaminan
Arsenic	S4UL	640	5	13.0	28.0	18.6	0	Mean value below guideline	У					normal				Arsenic
Beryllium	S4UL	12	5	1.0	1.6	1.1	0	Mean value below guideline	n					not normal				Beryllium
Boron	S4UL	240000	5	0.4	0.8	0.6	0	Mean value below guideline	У					normal				Boron
Cadmium	S4UL	190	5	0.3	1.0	0.5	0	Mean value below guideline	n					normal				Cadmium
Chromium (III)	S4UL	8600	5	18.0	31.0	26.0	0	Mean value below guideline	У					normal				Chromium (I
opper	S4UL	68000	5	5.7	14.0	10.2	0	Mean value below guideline	У					normal				Copper
Cyanide (total)	ATK	34	5	0.5	0.5	0.5	0	Mean value below guideline	У					not normal				Cyanide (tota
ead	C4SL (I)	1100	5	25.0	200.0	75.6	0	Mean value below guideline	n					normal				Lead
Mercury#	S4UL	58	5	0.1	0.4	0.2	0	Mean value below guideline	n					not normal				Mercury#
Nickel	S4UL	980	5	14.0	26.0	18.4	0	Mean value below guideline	У					normal				Nickel
Selenium	S4UL	12000	5	0.2	0.3	0.2	0	Mean value below guideline	n					not normal				Selenium
Vanadium	S4UL	9000	5	20.0	37.0	30.4	0	Mean value below guideline	У					normal				Vanadium
linc	S4UL	730000	5	100.0	180.0	130.0	0	Mean value below guideline	У					normal				Zinc

uitable for Use Level as published by LQM/CIEH
ategory 4 Screening Level
ategory 4 Screening Level for Lead at lower or upper bound of range
oil Screening Value derived by Atkins
uideline from BPG Note 5 as published by Forest Research

#

Assumed to be elemental mercury as initial screening value

Title

Analysis of test data in relation to concentrations of inorganic chemical contaminants.

Report ref: STP4262-GO1 Revision O

Analysis of test data in relation to concentrations of organic chemical contaminants

Adopted model:	Industrial/Commercia
Receptor:	Vegetation

Test procedure			Summ	hary of	test dat	a		Initial Screening	Outlier	test				Normality	test		UCL	
Contaminant	Guideline source	Guideline value* mg/kg	No. of tests	Min. mg/kg	Max. mg/kg	Mean mg/kg	No. of tests above guideline	Initial screening	Pass outlier test?	Number of outliers	Location of outlier	Depth	Concentration mg/kg	Shapiro-Wilk Normality test		plot Data normally distributed?	95% UCL of mean mg/kg	Contaminant
Acenaphthene	S4UL	84000	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Acenaphthene
Acenaphthylene	S4UL	83000	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Acenaphthylene
Anthracene	S4UL	520000	5	0.1	0.1	0.1	0	Mean value below guideline	n					not normal				Anthracene
Benzo(a)anthracene	S4UL	170	5	0.1	0.7	0.2	0	Mean value below guideline	n					not normal				Benzo(a)anthracen
Benzo(a)pyrene	S4UL	35	5	0.1	0.6	0.2	0	Mean value below guideline	n					not normal				Benzo(a)pyrene
Benzo(b)fluoranthene	S4UL	44	5	0.1	0.7	0.2	0	Mean value below guideline	n					not normal				Benzo(b)fluoranthe
Benzo(g,h,i)perylene	S4UL	3900	5	0.1	0.3	0.1	0	Mean value below guideline	n					not normal				Benzo(g,h,i)peryler
Benzo(k)fluoranthene	S4UL	1200	5	0.1	0.2	0.1	0	Mean value below guideline	n					not normal				Benzo(k)fluoranthe
Chrysene	S4UL	350	5	0.1	0.7	0.2	0	Mean value below guideline	n					not normal				Chrysene
Dibenzo(a,h)anthracene	S4UL	3.5	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Dibenzo(a,h)anthra
Fluoranthene	S4UL	23000	5	0.1	1.9	0.5	0	Mean value below guideline	n					not normal				Fluoranthene
Fluorene	S4UL	63000	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Fluorene
Indeno(1,2,3-cd)pyrene	S4UL	500	5	0.1	0.3	0.1	0	Mean value below guideline	n					not normal				Indeno(1,2,3-cd)py
Naphthalene	S4UL	190	5	0.1	0.1	0.1	0	Mean value below guideline	У					not normal				Naphthalene
Phenanthrene	S4UL	22000	5	0.1	0.4	0.2	0	Mean value below guideline	n					not normal				Phenanthrene
Phenols	S4UL	760	5	0.3	0.3	0.3	0	Mean value below guideline	У					not normal				Phenols
Pyrene	S4UL	54000	5	0.1	1.6	0.4	0	Mean value below guideline	n					not normal				Pyrene

Notes

*

S4UL	Suitable for Use Level as published by LQM/CIEH
C4SL	Category 4 Screening Level
SGV	Soil Guideline Value as published by the Environment Agency 2009
SSV	Soil Screening Value as derived by Soiltechnics
ATK	Soil Screening Value derived by Atkins

Assuming a SOM of 1%

Title Analysis of test data in relation to concentrations organic chemical contaminants.

Report ref: STP4262-GO1 Revision O

Table number	
4	
	h 2018 bendix H
	4 Marc

environmental and geotechnical consultants

Summary of petroleum hydrocarbon test results

Model: Industrial/Commercial

BTEX (Red highlights indicate exceedance of guideline value)

Indicator	unit	S4UL (mg/kg)	Concentration TP08 0.30	
Benzene	mg/kg	27	< 0.001	
Toluene	mg/kg	56000	< 0.001	
Ethylbenzene	mg/kg	5700	< 0.001	
o-Xylene	mg/kg	6600	< 0.001	
m,p-Xylene	mg/kg	5900	< 0.001	

Hydrocarbon banding (Red highlights indicate exceedance of guideline value)

Fraction	unit	S4UL	Concentration	
		(mg/kg)	TP08	
			0.30	
Aliphatic				
EC 5 - 6	mg/kg	3200	< 0.010	
EC >6 - 8	mg/kg	7800	< 0.010	
EC >8 - 10	mg/kg	2000	< 0.10	
EC >10 - 12	mg/kg	9700	< 0.10	
EC >12 - 16	mg/kg	59000	< 0.10	
EC >16 - 35	mg/kg	1600000	< 0.10	
EC >35 - 44	mg/kg	1600000	< 0.10	
Aromatic				
EC 5 - 7 (benzene)	mg/kg	26000	< 0.010	
EC >7 - 8 (toluene)	mg/kg	56000	< 0.010	
EC >8 - 10	mg/kg	3500	< 0.10	
EC >10 - 12	mg/kg	16000	< 0.10	
EC >12 - 16	mg/kg	36000	< 0.10	
EC >16 - 21	mg/kg	28000	< 0.10	
EC >21 - 35	mg/kg	28000	< 0.10	
EC >35 - 44	mg/kg	28000	< 0.10	

tle	
omparison of measured concentration	s of
etroleum hydrocarbons with guideline	values.

Table number 5

Initial Conceptual Model based on desk study information

Current site use
Proposed site use

Vacant site accessible to public Commercial/industrial

Source	Pathway										Receptor		Risk assessment to CIF	IA C552	
	Humans						Vegetation	Water					Consequence of risk occurring Risk		
	Ingestion of	Ingestion of soil	Ingestion of	Inhalation of	Inhalation of	Dermal contact	Root uptake,	Percolation of	Near-surface	Saturation of	-		via most likely pathway		
	airborne dust		vegetables and	airborne dust	vapours	with soil and dust	deposition to	water through	water run-off	contaminated soil					
			soil attached to				shoots and	contaminated soi	il through	by floodwater					
			vegetables				foliage contact		contaminated soi	I					
<u>On site</u>															
Made Ground soils	Likely	Low likelihood	Unlikely	Likely	Likely	Likely	-	-	-	-	Current and proposed site users	Adult	Mild	Low/moderate	
	Likely	Likely	Unlikely	Likely	Likely	Likely	-	-	-	-	Construction operatives	Adult	Mild	Low/moderate	
	-	-	-	-	-	-	Likely	-	-	-	Vegetation (current)	-	Mild	Low/moderate	
	-	-	-	-	-	-	Likely	-	-	-	Vegetation (proposed)	-	Mild	Low/moderate	
	-	-	-	-	-	-	-	Likely	Likely	Low likelihood	Water (current and proposed)	-	Minor	Low	

Title

Initial Conceptual Site Model

Report ref: STP4262-GO1 Revision O

soiltechnics

environmental and geotechnical consultants

Table number

1

March 2018 Appendix I

Final Conceptual Model based on laboratory testing data

Current site use Proposed site use

Vacant site accessible to public Commercial/industrial

Source	Pathway										Receptor		Risk assessment to CIRIA C552 Consequence of risk occurring Risk		
	Humans	Increation of each	Incestion of	Inheletion of	Inhelation of	Dermal contest	Vegetation	Water	Noor ourfood	Coturation of					
	Ingestion of airborne dust	Ingestion of soil	Ingestion of vegetables and soil attached to	Inhalation of airborne dust	Inhalation of vapours	Dermal contact with soil and dust	Root uptake, deposition to shoots and	Percolation of water through contaminated soi	Near-surface water run-off through	Saturation of contaminated soil by floodwater			via most likely pathway		
			vegetables				foliage contact		contaminated so						
<u>On site</u>															
Made Ground soils	Likely	Low likelihood	Unlikely	Likely	Likely	Likely	-	-	-	-	Current and proposed site users	Adult	Minor	Low	
	Likely	Likely	Unlikely	Likely	Likely	Likely	-	-	-	-	Construction operatives	Adult	Minor	Low	
	-	-	-	-	-	-	Likely	-	-	-	Vegetation (current)	-	Minor	Low	
	-	-	-	-	-	-	Likely	-	-	-	Vegetation (proposed)	-	Minor	Low	
	-	-	-	-	-	-	-	Likely	Likely	Low likelihood	Water (current and proposed)	-	Minor	Low	

Title Final Conceptual Site Model

Report ref: STP4262-GO1 Revision O

soiltechnics environmental and geotechnical consultants

Table number 2

March 2018 Appendix I

Record of in-situ gas and water level monitoring results

Da	ate / Tii	me	ument Used	Location	Atmospheric	pressure (mB)	perature (°C)		ane, CH₄ ′v) <i>Chg</i>		Dioxide, ı/v) Chg	Oxygen, O ₂ (%v/v)		Oxygen, O ₂ (%v/v)		۱ (%v/v) Balance		Gas Flow (q)	Peak hazardous gas flow rate <i>Qhgs</i>		Steady hazar gas flow ra <i>Qhgs</i>	
			Instr		At	bre	Tem	Peak	Steady	Peak	Steady	Minimum	Average	(%v/v)	(% LEL)	(l/Hr)	CH ₄	CO ₂	CH ₄	СС		
09/02	2/2018	09:24	GA5000	BH01	1012	Steady	4.0	0.1	0.1	0.3	0.3	20.9	21.3	78.3	2.0	0.1	0.00	0.00	0.00	0.0		
09/02	2/2018	08:47	GA5000	BH01	1016	Steady	4.0	0.1	0.1	1.1	0.9	20.1	20.4	78.6	2.0	-0.1	0.00	0.00	0.00	0.0		
09/02	2/2018	09:02	GA5000	BH02	1017	Steady	4.0	0.1	0.1	1.0	0.9	20.9	20.9	78.1	2.0	0.0	0.00	0.00	0.00	0.0		
09/02	2/2018	09:53	GA5000	BH02	1016	Steady	4.0	0.1	0.1	0.3	0.3	21.2	21.2	78.4	2.0	-0.1	0.00	0.00	0.00	0.0		

0.1	0.1	1.1	0.9	20.1	20.4	78.6	2.0	0.10	0.00	0.00	0.00	
0.1	0.1	0.7	0.6	20.8	21.0	78.4	2.0	0.10	0.00	0.00	0.00	

Notes:

1) Gas Screening Value (GSV) derived by multiplying the peak gas concentration (%) by the peak flow rate (I/h).

2) The gas analyser is capable of measuring flow to an accuracy of 0.1l/h. Below this value the analyser records zero flow. Adopting a precautionary approach we have used a flow rate of 0.1l/h when the analyser records zero with this flow rate used to determine the gas screening value.

Title

Record of in-situ gas monitoring results

Report ref: STP4262-GO1 Revision: O

Additonal considerations:

soiltechn environmental and geotechnical co

rdous ate	Characteristic gas situation	Potentially Explosive	Water Level (m)	Water Level (mAOD)
CO ₂	Char	L	Wa	5
0.00	ONE	NO	0.96	35.24
0.00	ONE	NO	0.72	35.48
0.00	ONE	NO	0.77	38.33
0.00	ONE	NO	0.77	38.33

0.00	ONE	Worst case scenario
0.00	ONE	Average site scenario

Revision

Final

Category of	danger	Irritant	Harmful	То	xic	Carcin	nogenic	Corr	osive	Toxic for re	production	Muta	agenic		Ecotoxic	
														∑N : R50-53/0.25	∑N : 50-53	∑N : 50-53
														+∑N : R51-53/2.5	 +∑N : R50	– +∑N : 51-53
						Carc Cat 1				Repr Cat 1 or				+∑N : R52-53/25		+∑N : 52-53
Risk Phr	ase	Xi	Xn	T+	т	or 2	Carc Cat 3	C R34	C R35	2		Muta Cat 2	Muta Cat 3			+∑N : R53
Contaminant	Highest	H4	H5	H6	H6	H7	H7	H8	H8	H10	H10	H11	H11	H14	H14	H14
	concentration	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)			
Metals																
Arsenic	28.00			0.0037	0.0043	0.0043								0.6740	0.0043	0.0043
Beryllium	1.60	0.0004		0.0004	0.0004	0.0004										0.0004
Copper	14.00	0.0035	0.0035												0.0035	0.0035
Cadmium	1.00		0.0001		0.0001	0.0001										
Chromium	31.00					0.0050									0.0050	0.0050
Lead	200.00		0.0216							0.0216	0.0216				0.0216	0.0216
Mercury	0.43			0.0000											0.0000	0.0000
Nickel	26.00		0.0033				0.0033				0.0033				0.0033	0.0033
Selenium	0.31				0.0000										0.0000	0.0000
Zinc	180.00	0.1305	0.1305			0.0499		0.0375					0.0846		0.1305	0.1305
Vanadium	37.00	0.0054			0.0054						0.0054		0.0054			0.0054
РАН																
Naphthalene	0.00		0.0000												0.0000	0.0000
Benzo(a)anthracene	0.68				0.0001	0.0001									0.0001	0.0001
Chrysene	0.67				0.0001	0.0001							0.0001		0.0001	0.0001
Benzo(b)fluoranthene	0.65				0.0001	0.0001									0.0001	0.0001
Benzo(k)fluoranthene	0.17				0.0000	0.0000									0.0000	0.0000
Benzo(a)pyrene	0.57					0.0001				0.0001		0.0001			0.0001	0.0001
Dibenzo(a,h)anthracene	0.00				0.0000	0.0000									0.0000	0.0000
ТРН	0.00				0.0000	0.0000										
Benzene	0.00	0.0000			0.0000	0.0000										0.0000
1,2,4-trimethylbenzene	0.00	0.0000	0.0000			0.0000					0.0000	0.0000				0.0000
Hydrocarbon (C6 to C35)	0.00		0.0000			0.0000					0.0000	0.0000				0.0000
Total (or greatest)		0.1399	0.1590	0.0042	0.0105	(0.0499)	(0.0033)	0.0375	0.0000	(0.0216)	(0.0216)	(0.0001)	(0.0846)	0.6740	0.1685	0.1744
Threshold		1%	1%	0.10%	3%	0.10%	1%	5%	1%	0.50%	3%	0.10%	1%	1	25%	25%
Exceeded Y/N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
								• •					• •	••	••	

Table comparing cumulative compound concentrations with hazardous waste threshold values

Title

Hazard assessment spreadsheet

Report ref: STP4262-GO1 Revision: O

soiltechnics environmental and geotechnical consultants

Table number 1 of 1

> March 2018 Appendix K

environmental and geotechnical consultants

Landfill Waste Acceptance	e Criteria			Laboratory test data
Parameter Inert waste landfill		Stable non-reactive hazardous waste in non-hazardous landfill		WAC
Parameters determined on the wa	ste			
Total organic carbon (w/w %)	3%	5%	6%*	0.58
Loss on ignition			10%*	2.5
BTEX (mg kg ⁻¹)	6			< 0.010
PCBs (7 congeners) (mg kg ⁻¹)	1			< 0.10
Mineral oil C_{10} - C_{40} (mg kg ⁻¹)	500			< 10
PAH (17 congeners)	100			< 2.0
рН		>6		7.9
Acid neutralisation capacity pH 6 (mol kg ⁻¹)		To be evaluated	To be evaluated	
Acid neutralisation capacity pH 4 (mol kg ⁻¹)		To be evaluated	To be evaluated	
Limit values (mg kg ⁻¹) for complian	ce test using B	N 12457-3 at L/S 10 k	g ⁻¹	-
As (arsenic)	0.5	2	25	< 0.050
Ba (barium)	20	100	300	< 0.50
Cd (cadmium)	0.04	1	5	< 0.010
Cr (chromium (total))	0.5	10	70	< 0.050
Cu (Copper)	2	50	100	< 0.050
Hg (mercury)	0.01	0.2	2	< 0.0050
Mo (molybdenum)	0.5	10	30	< 0.050
Ni (nickel)	0.4	10	40	< 0.050
Pb (lead)	0.5	10	50	< 0.010
Sb (antimony)	0.06	0.7	5	0.025
Se (selenium)	0.1	0.5	7	< 0.010
Zn (zinc)	4	50	200	< 0.50
Cl (chloride)	800	15,000	25,000	36
F (fluoride)	10	150	500	1.3
SO ₄ (sulphate)	1000#	20,000	50,000	100
Total Dissolved Solids (TDS) ⁺	4,000	60,000	100,000	840
Phenol index	1			< 0.50
Dissolved organic carbon at own pH or pH 7.5-8.0 [@]	500	800	1000	67

<u>Notes</u>

* Either TOC or LOI must be used for hazardous waste

If an inert waste does not meet the SO4 L/S10 limit, alternative limit values of 1500 mg l-1 SO4 at Co (initial eluate from the percolation test (prCEN/TS 14405:2003)) AND 6000 mg kg-1 SO4 at L/S10 (either from the percolation test or batch test BS EN 12457-3), can be used to demonstrate compliance with the acceptable criteria for inert wastes.

The value for TDS can be used instead of the values for Cl and SO4
 DOC at pH 7.5-8.0 abd L/S10 can be determined or eluate derived from a modified version of the pH dependence Test, prEN 14429, if the limit value at own pH (BS EN 12457 eluate) is not met.

PRIMARY CLASSIFICATION	NON- HAZARDOUS	
SECONDARY CLASSIFICATION	INERT	

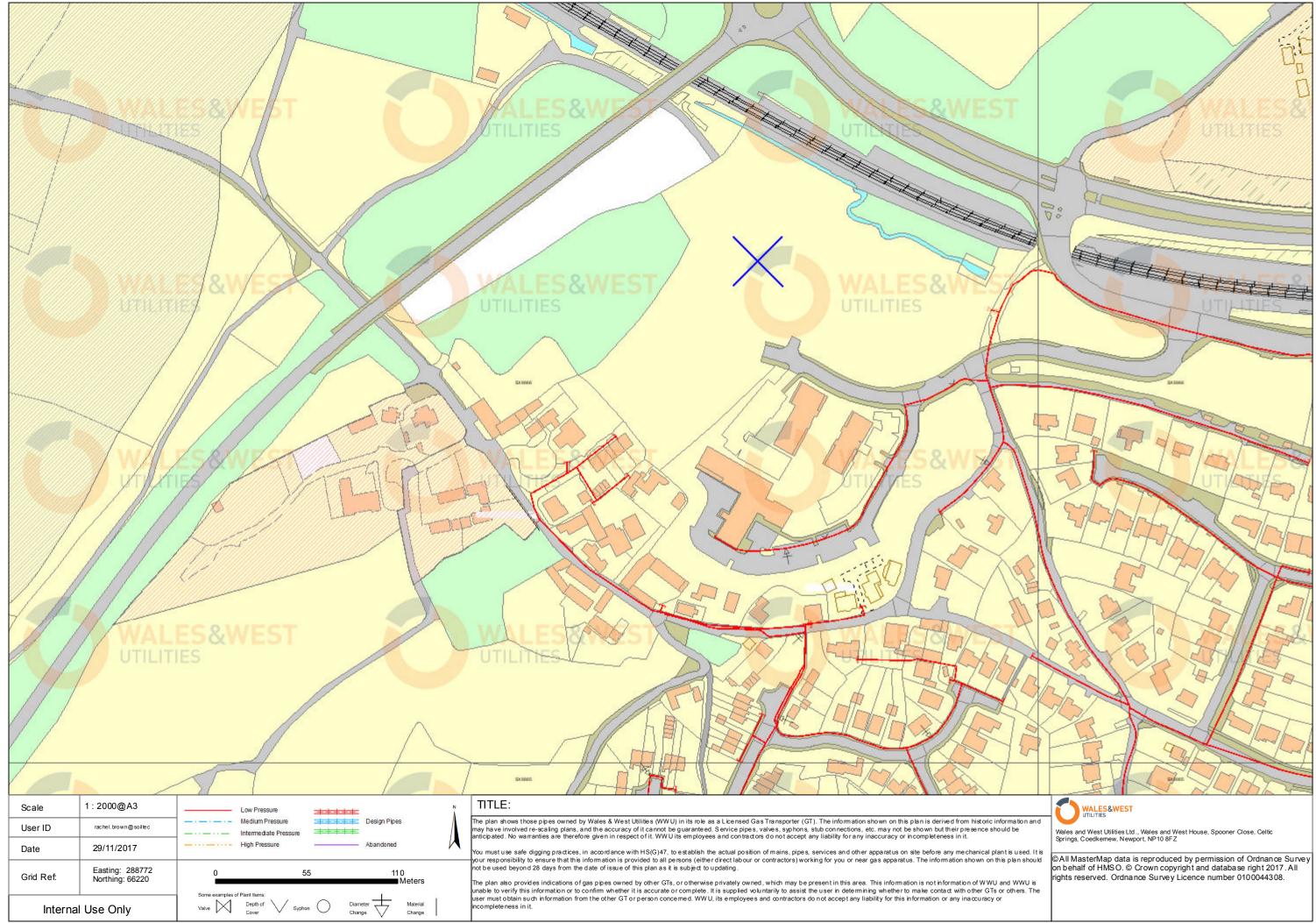
Title

Comparison of test data to landfill waste acceptance criteria (table 5.1) (Secondary classification)

Table number

1 of 1

environmental and geotechnical consultants

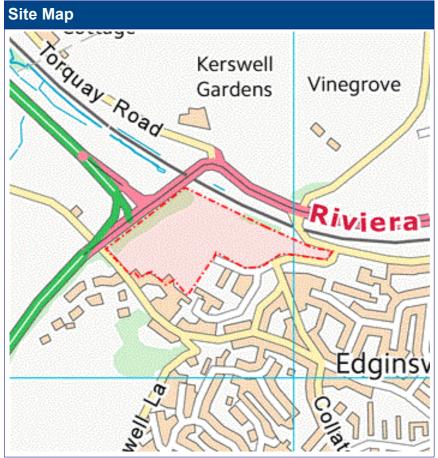

	Basic categorisation sch	edule for Made Ground soils
Ρ	- ·	f The Landfill (England and Wales) (Amendment) ons 2004 Part 2 (5)
(a)	Source and origin of waste	
	Proposed Wickes Store at Orchard Way, Toro	quay, TQ2 7FF
(b)	Process producing the waste	
	Foundation excavations, general site clearan	ce, cut and fill operations
(c)	Statement on waste treatment	
	Refer to pre-treatment confirmation form	
(d)	Composition of the waste	
	Red brown gravelly clayey to very clayey fine sandstone, breccia and frequent quartz, lime	e to medium sand. Gravel consists of fine to medium sub-angular stone, brick, china and plastic.
(e)	Appearance of the waste	
	As above	
(f)	European waste catalogue code	
	17-05-04 (for non-hazardous waste)	
(g)	Hazardous waste properties	
	None	
(h)	Is the waste prohibited under regulation 9?	
	No	
(i)	Landfill class	
	Inert based on laboratory testing	
(j)	Additional precautions required at landfill	
	None	
(k)	Can waste be recycled or recovered?	
	Yes	
(1)	Name and address of waste producer	
	Travis Perkins, Lodgeway House, Harlestone	Road, Northampton, NN5 7UG
(m)	Name and address of consultant Soiltechnics Limited, Cedar Barn, Wh Tel: (01604) 781877 Fax: (01604) 781007	nite Lodge, Walgrave, Northampton. NN6 9PY. E-mail: mail@soiltechnics.net Website: www.soiltechnics.net
Sched	lule Date:	Signed
22-02	-18	
Soilte	chnics reference:	- PN/C
	262-G01	V IVAC
J.I. 72		Darry Novion P. Sc (Hons) ECS ANIEnvSc
		Darryl Neylon B.Sc (Hons) FGS AMIEnvSc Geo-environmental Engineer, Soiltechnics Limited

environmental and geotechnical consultants

	Basic categorisation s	schedule for Alluvium soils
Ρ	•	of The Landfill (England and Wales) (Amendment) ons 2004 Part 2 (5)
(a)	Source and origin of waste	
	Proposed Wickes Store at Orchard Way, Tor	quay, TQ2 7FF
(b)	Process producing the waste	
	Foundation excavations, general site clearan	nce, cut and fill operations
(c)	Statement on waste treatment	
	Refer to pre-treatment confirmation form	
(d)	Composition of the waste	
		ed to orange brown slightly gravelly sandy to very sandy clay. sandstone. Sand was fine to coarse grained.
(e)	Appearance of the waste	
	As above	
(f)	European waste catalogue code	
	17-05-04 (for non-hazardous waste)	
(g)	Hazardous waste properties	
	None	
(h)	Is the waste prohibited under regulation 9?	
	No	
(i)	Landfill class	
	Inert based on soils being of natural origin	
(j)	Additional precautions required at landfill	
	None	
(k)	Can waste be recycled or recovered?	
	Yes	
(I)	Name and address of waste producer	
	Travis Perkins, Lodgeway House, Harlestone	Road, Northampton, NN5 7UG
(m)	Name and address of consultant Soiltechnics Limited, Cedar Barn, Wi Tel: (01604) 781877 Fax: (01604) 781007	hite Lodge, Walgrave, Northampton. NN6 9PY. E-mail: mail@soiltechnics.net Website: www.soiltechnics.net
Sched	ule Date:	Signed
22-02	-18	
Soilte	chnics reference:	- PN/C
STP42	262-G01	
		Darryl Neylon B.Sc (Hons) FGS AMIEnvSc Geo-environmental Engineer, Soiltechnics Limited

environmental and geotechnical consultants

Ba	asic categorisation schedule for	or Watcombe Breccia Formation soils
Ρ		of The Landfill (England and Wales) (Amendment) ons 2004 Part 2 (5)
(a)	Source and origin of waste	
	Proposed Wickes Store at Orchard Way, Tor	rquay, TQ2 7FF
(b)	Process producing the waste	
	Foundation excavations, general site clearar	nce, cut and fill operations
(c)	Statement on waste treatment	
	Refer to pre-treatment confirmation form	
(d)	Composition of the waste	
	Red brown slightly to very clayey gravelly to sandstone. Gravel consists of fine to coarse	o very gravelly fine to coarse sand and weak breccia and well sorte sub-angular sandstone and breccia.
(e)	Appearance of the waste	
	As above	
(f)	European waste catalogue code	
	17-05-04 (for non-hazardous waste)	
(g)	Hazardous waste properties	
	None	
(h)	Is the waste prohibited under regulation 9?	
	No	
(i)	Landfill class	
	Inert based on soils being of natural origin	
(j)	Additional precautions required at landfill	
	None	
(k)	Can waste be recycled or recovered?	
	Yes	
(1)	Name and address of waste producer	
	Travis Perkins, Lodgeway House, Harlestone	Road, Northampton, NN5 7UG
(m)	Tel: (01604) 781877	hite Lodge, Walgrave, Northampton. NN6 9PY. E-mail: mail@soiltechnics.net
Sched	Fax: (01604) 781007 dule Date:	Website: www.soiltechnics.net Signed
22-02		
		- PN/
	echnics reference:	- PN/C
STP42	262-G01	Darryl Neylon B.Sc (Hons) FGS AMIEnvSc
		Geo-environmental Engineer, Soiltechnics Limited



Enquiry Confirmation LSBUD Ref: 11736632

Enquirer						
Name	Mrs R Brown	Phone	01604781877			
Company	Soiltechnics Limited	Mobile	Not Supplied			
		Fax	Not Supplied			
Address	Cedar Barn White Lodge Walgrave Northamptonshire nn6 9PY					
Email	rachel.brown@soiltechnics.net					
Notes	Please ensure your contact details are correct and contact you.	up to date on the	system in case the LSBUD Members need to			

Enquiry Details			
Scheme/Reference	STP4262		
Enquiry type	Initial Enquiry	Work category	Development Projects
Start date	03/01/2018	Work type	Commercial/industrial
End date	05/01/2018	Site size	44823 metres square
Searched location	XY= 288830, 66303 Easting/Northing	Work type buffer*	25 metres
Confirmed location	288820 066297		

* The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Contains Ordnance Survey data © Crown copyright and database right 2016

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- 2. "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a. These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

National Grid. Please note that the LSBUD service only contains information on National Grid's Gas above 7 bar asset, all National Grid Electricity Transmission assets and National Grid's Gas Distribution Limited above 2 bar asset.

For National Grid Gas Distribution Ltd below 2 bar asset information please go to www.beforeyoudig.nationalgrid.com

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

List of affected LSBUD members						
Asset Owner	Phone/Email	Emergency Only	Status			
ESP Utilities Group	01372227560	01372227560	Await response			
Western Power Distribution	08000963080	08006783105	Await response			

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	5
AWE Pipeline	Gateshead Energy Company	Prysmian Cables & Systems Ltd (c/o Western Link)
BOC Limited (A Member of the Linde Group)	Gigaclear PLC	Redundant Pipelines - LPDA
BP Exploration Operating Company Limited	Humbly Grove Energy	RWEnpower (Little Barford and South Haven)
BPA	IGas Energy	SABIC UK Petrochemicals
Carrington Gas Pipeline	INEOS FPS Pipelines	Scottish Power Generation
CATS Pipeline c/o Wood Group PSN	INEOS Manufacturing (Scotland and TSEP)	Seabank Power Ltd
Cemex	INOVYN Enterprises Limited	SGN
Centrica Storage Ltd	Intergen (Coryton Energy or Spalding Energy)	Shell (St Fergus to Mossmorran)
CLH Pipeline System Ltd	Mainline Pipelines Limited	Shell Pipelines
Concept Solutions People Ltd	Manchester Jetline Limited	SSE (Peterhead Power Station)
ConocoPhillips (UK) Ltd	Manx Cable Company	Total (Colnbrook & Colwick Pipelines)
DIO (MOD Abandoned Pipelines)	Marchwood Power Ltd (Gas Pipeline)	Total Finaline Pipelines
E.ON UK CHP Limited	Melbourn Solar Limited	Transmission Capital
	National Grid Gas (Above 7 bar), National Grid	
EirGrid	Gas Distribution Limited (Above 2 bar) and	UK Power Networks
	National Grid Electricity Transmission	
Electricity North West Limited	Northumbrian Water Group	Uniper UK Ltd
ENI & Himor c/o Penspen Ltd	NPower CHP Pipelines	Vattenfall
EnQuest NNS Limited	Oikos Storage Limited	Veolia ES SELCHP Limited
EP Langage Limited	Ørsted	Westminster City Council
ESSAR	Perenco UK Limited (Purbeck Southampton	Wingas Storage UK Ltd
LOSAN	Pipeline)	Wingas Storage OK Liu
Esso Petroleum Company Limited	Petroineos	Zayo Group UK Ltd c/o JSM Group Ltd
Fulcrum Pipelines Limited	Phillips 66	
Gamma	Premier Transmission Ltd (SNIP)	

Enquiry Confirmation LSBUD Ref: 11736632

The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD members (Asset owners not registered on LSBUD)							
Asset Owner	Preferred contact method	Phone	Status				
ВТ	https://www.swns.bt.com/pls/mbe/welcome.home	08009173993	Not Notified				
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified				
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified				
Energetics Electricity	plantenquiries@energetics-uk.com	01698404646	Not Notified				
ENGIE	nrswa@cofely-gdfsuez.com	01293 549944	Not Notified				
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified				
GTT (formerly Hibernia Networks)	owen.maguire@gtt.net	01704 322 300	Not Notified				
Interoute	interoute.enquiries@plancast.co.uk	02070259000	Not Notified				
KPN (c/-Instalcom)	kpn.plantenquiries@instalcom.co.uk	n/a	Not Notified				
Level 3 Communications UK Ltd (C/-Instalcom)	plantenquiries@instalcom.co.uk	02087314613	Not Notified				
Mobile Broadband Network Limited	mbnl.plant.enquiries@turntown.com	01212 621 100	Not Notified				
South West Water	searches@southwestwater.co.uk	01392443115	Not Notified				
Tata (c/-McNicholas)	plantenquiries@mcnicholas.co.uk	03300558469	Not Notified				
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified				
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified				
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified				
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified				
Vtesse Networks	https://plant.interoute.com/plant-enquiries/	01992532100	Not Notified				
Wales and The West Utilities	www.wwutilities.co.uk/login.aspx	02920278912	Not Notified				

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore, LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

SOILTECHNICS CEDAR BARN WHITE LODGE WALGRAVE , NN6 9PY

UNDERGROUND ASSET INFORMATION

PUBLIC DRAINAGE & WATER

Location:	LAND OFF ORCHARD WAY, TORQUAY TQ2 7JD
Report Reference:	GIS/TRW/LAN/01122017/6
Your Reference:	STP4262
Date:	01 December 2017
For the Attention of:	RACHEL BROWN

Further to your request for information dated 29 November 2017, the Company's apparatus for the above site is shown herewith. South West Water Limited has made all reasonable efforts to ensure the accuracy of this information, but provides it subject to the following conditions:

· Service pipes and drainage connections may not be shown.

• No liability whatsoever is accepted for any inaccuracies or omissions in the information.

• If no reference is made in the information to any interest or right of the Company on any land, this is not to be taken as conclusive evidence that no such interest or right exists.

These reservations are in addition to any statutory regulations which apply.

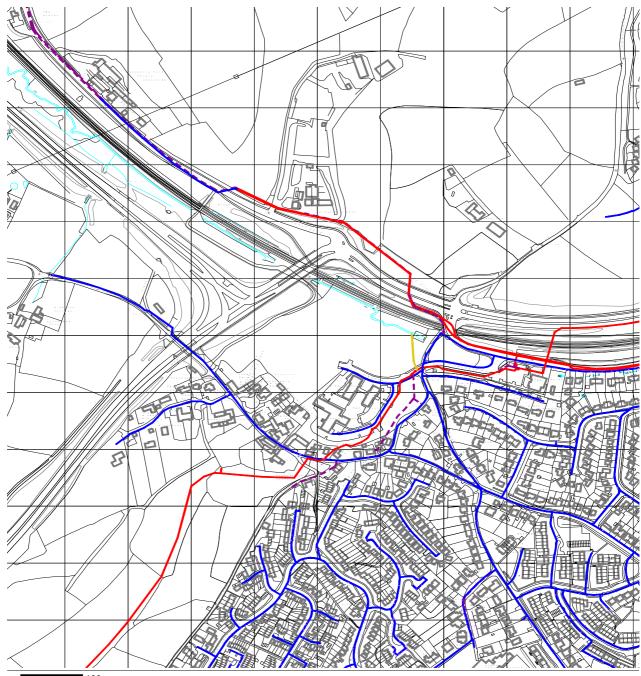
Source for Searches - A South West Water Service contactus@sourceforsearches.co.uk 0845 330 3401

ASSETS NOT SHOWN? THEY MAY BE PRIVATE HOMEOWNERS RESPONSABILITY PRIVATE SEWER CCTV SURVEYS AVAILABLE GO TO SOURCEFORSEARCHES.CO.UK

USEFUL CONTACTS: LEAKS / PIPE COLLAPSE 0344 346 2020 NEW CONNECTIONS

0800 083 1821 0344 346 2020

SOUTH WEST WATER LIMITED. REGISTERED IN ENGLAND No. 2366665 - A SUBSIDIARY OF PENNON GROUP PLC. REGISTERED OFFICE: PENINSULA HOUSE, RYDON LANE, EXETER EX2 7HR



The information indicated on this plan is provided only as a guide and no assurance as to its accuracy is given or implied. The Company accepts no liability whatsoever for any error or omission in the information. It should be noted that not all mains, service pipes and other apparatus of the Company in the area of the plan are shown.

WATER

LAND OFF ORCHARD WAY, TORQUAY TQ2 7JD

100 m

Reproduced from the Ordnance Survey map by South West Water Ltd by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office.

Water Pipe D	etails	Common Materi	als			Water	Feature	S		Customer Meter	
Distribution		Cast Iron	CI	High Density	HDPE	Washout	\rightarrow	Hatchbox		Mains Meter	- B
Trunk		Spun Iron	SI	Polyethylene		Hydrant			-©-	Relief Valve	
Communication		Ductile Iron	DI	Medium Density	MDPE	Washout Hydrant	-0 -	Sluice Valve Open (AC)	\rightarrow	Pressure Reducing Valve	> /
Untreated		Steel	ST	Polyethylene		Air Valve (Single)	-	Sluice Valve Closed		Pressure Sustaining Valve	_⊳/_
Private		Asbestos Cement	AC	High Pressure	HPPE	Air Valve (Double)		Sluice Valve (CC)	-3-	Non Return Valve / Reflux	→
Abandoned		Plastic	UPVC	Polyethylene		Stop	\rightarrow	Stop	\rightarrow	Relief Valve)—

The information indicated on this plan is provided only as a guide and no assurance as to its accuracy is given or implied. The Company accepts no liability whatsoever for any error or omission in the information. It should be noted that not all mains, service pipes and other apparatus of the Company in the area of the plan are shown.

LAND OFF ORCHARD WAY, TORQUAY TQ2 7JD DRAINAGE 0 0 1 0 Ö DI S HTTE

100 m

Reproduced from the Ordnance Survey map by South West Water Ltd by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (c) Crown Copyright South West Water Ltd licence number 0100018191

Sewer Pipe Details		Common Shapes						Sewerage Structures			
Public - Foul Public - Surface Public - Combined		Circular Rectangular Unknown	C R U	Barrel Trapezodial Egg Shape	B T E	U Shaped Horseshoe Oval	US H OV	Manhole _{Foul}	•	Manhole Surface	0
Public - Treated Pumping Main	>	Common Mate	erials					Manhole Combined	●	Manhole Private	•
Elevated	/EL	Vitrified Clay	VC	Alkathene	AK	Medium Density Polyvinvlchloride	MDPE	Soakaway	SK	Catchpit	CP
Unverified Abandoned		Pre Cast Concrete	PCO	Asbestos Cement	AC	Unplasticised Polyvinylchloride	UPVC	Washout	WO	Hatchbox	HB
Highway		Concrete	co	Polyvinylchloride	PVC	Unknown	U	Buried	BU	Unable to Locate	UL

REQUIREMENTS AND DEVELOPMENT/TREE PLANTING GUIDANCE

In accordance with the provisions of Clause 26 of South West Water's Code of Practice, you are advised that in order to maintain adequate future access to the pipeline and to avoid interference with it, it is necessary to ensure that the following guidelines are observed:

1. Buildings And Permanent Structures

Clear working strip:

A clear working strip along the pipe is required between buildings and permanent structures and this must be:-

Pipes up to 150mm diameter	6.0 metres
Pipes 151-600mm diameter	7.0 metres
Pipes 601mm diameter and over	9.0 metres

If a building or permanent structure is planned within these limits please contact our Development Planning team as Build Over consent may be required. Development Planning developerservices@southwestwater.co.uk.

Proximity of buildings:

No buildings or permanent structures should be placed within 3 metres of pipes below 300mm in diameter or within 3.5 metres of pipes of 300mm or over in diameter (distances measured from the centre of the pipe), and in addition, buildings and permanent structures must be constructed so as to ensure that no additional loads are transmitted to the pipe.

(N.B: Pipe sizes refer to the internal diameter / bore of the pipe).

2. Trees And Shrubs

Roots can damage pipelines over time and extensive root systems will limit access to the pipeline in breach of the Company's right to access for repair or replacement. As a rule of thumb, the root spread of a tree is approximately the same as its eventual canopy spread. To help you avoid damage or interference to the pipeline, the Company suggests the following quidelines:

• No large or forest trees should be planted with 7 metres of the pipeline (examples include Oak, Ash, Beech, Douglas Fir, Sitka Spruce etc.)

• Medium to small sized trees should always be planted in such a way as to ensure that the eventual root spread reaches no closer than 1 metre of the pipeline, in practice, if trees are planted a distance of 5 metres away from the pipeline, this should be sufficient.

 \cdot Bushes and shrubs should never be planted closer than 2 metres from the pipeline.

Closer than 2 metres either side of the pipeline may be planted with hedge plants and ground cover only.

• The measurement s and distances set out are for guidance only and there will always be exception, for example: Poplars and Willows, which have a particularly invasive root sys tem. If you are unsure of any individual case, then specialist advice should always be sought prior to planting.

• The guidelines set out above are based on the Company's standard access requirements for its apparatus. If, for engineering reasons, the distances set out need to be varied at particular locations, you will be advised of this before compensation for works is finalised. If you need to know the precise underground location of a new water main / sewer after its installation, please contact any of the Company's local offices, and Company staff will be pleased to mark out the position of the pipeline within your land.

 If the Company finds any infringement of its legal rights of access, or any damage being caused to the pipeline, the Company reserves the right to take appropriate action to ensure that there is no interference with its statutory apparatus. Requirements to be met by persons carrying out works near to water mains and sewers:

- The precise position of water mains and sewers must be ascertained by hand digging trial holes after first contacting South West Water, who will give such information as is available regarding the general location of the mains and sewer in the area. No liability is accepted for the accuracy of any information given as to the position or existence of water mains and sewers. In particular, service pipes and drainage connection are not generally shown on mains records, but their presence should be anticipated and precautions taken to avoid damage.
- Notices of intent must be given to South West Water before any works are carried out in the vicinity, except in cases of emergency when our Operations Centre should be contacted as soon as possible.
- Unless prior written approval has been obtained, mechanical excavation may not be permitted around, or within, 3 meters of the water main or sewer. Excavation may be necessary by hand.
- 4. Concrete haunches or surrounds to sewer s must not be disturbed without prior written consent from South West Water.
- 5. Before backfilling, the mains and sewer s will be inspected and any flaws or damage to the pipe or wrapping, if found, will be repaired by South West Water . All such flaws or damage must be immediately reported to the Company as soon as they are discovered. The carrying out of such repair s by South West Water shall not affect the question of liability, should any damage found to have resulted from the acts of those undertaking the works, their contractors, servants or agents.
- Approved backfill will be used immediately around or over the ma ins and sewer s to a minimum cover of 300mm and the remainder of the backfill shall be to the appropriate Highways Authority Specification for the Reinstatement of Openings in Highways.
- 7. Both the existing main or sewer and the new works shall be suitably supported to prevent future settlement and any subsequent damage to equipment.
- 8. Ground adjacent to concrete thrust blocks supporting the main(s) and sewer(s) must not be disturbed.
- Adequate support must be given to all water mains and sewers where these are likely to be undermined, and to all trenches in the vicinity of these, during the process of the works.
- 10. No apparatus shall be laid on or over any land within 300mm measured horizontally from any part of a water main or sewer or other apparatus belonging to the Company. Provided always that this cause shall not prevent any pipe, cable or conducting medium being laid at an angle of between 45 and 90 degrees across the line of the Company's apparatus, with a vertical clearance in excess of 300mm. In exceptional circumstances this clause may be varied or deleted with the prior written consent from South West Water.
- 11. South West Water must be consulted before any work representing an increased risk to the integrity of the mains or sewers (e.g., piling, using explosives, thrust boring, pipe bursting etc.) is carried out.
- 12. Facilities for inspecting all work carried out shall be given to South West Water with adequate notice

IN THE EVENT OF A LEAK OR PIPE COLLAPSE PLEASE CONTACT SOUTH WEST WATER IMMEDIATELY ON 0344 346 2020 (24 HOURS) Our Ref: 11736632 Your Ref: STP4262

Wednesday, 29 November 2017

R Brown Cedar Barn White Lodge Walgrave Northamptonshire nn6 9PY

Dear R Brown

Thank you for your enquiry dated Wednesday, 29 November 2017

I now enclose a copy of our plan showing existing Western Power Distribution (WPD) Electricity / WPD Surf Telecom apparatus in the vicinity of your proposed works. This information is given as a general guide only and its accuracy cannot be guaranteed. Please note that all WPD equipment on site should be assumed to be LIVE until WPD prove otherwise and provide you with confirmation to this effect in writing. Recent additions to our network, or service connections between the main cable and a building or street lamp may not be shown.

Damage to underground cables and contact with overhead lines can cause severe injury or may prove fatal. If you are excavating on site in the vicinity of either WPD Electrical apparatus or WPD Surf Telecom apparatus you must comply with the requirements of the following:-

Health & Safety Executive guidance HS(G)47, Avoiding Danger from underground services.

Work taking place in the vicinity of our plant is also regulated under the:-

Electricity at Work Regulations 1989, Health and Safety Act 1974, CDM Regulations 2015. Safe working procedures should be defined and practiced

Please ensure that the use of mechanical excavators in the vicinity of our plant is kept to a minimum. WPD Surf Telecom ducts contain fibre cables, which are expensive to repair. Therefore, extreme care must be taken whilst working in the vicinity of these ducts, hand digging methods being used to determine their precise position.

If there are overhead lines crossing your site and your proposal involves building works which may infringe the clearance to our overhead system then you should call the relevant general enquiries number (see page 2 of this letter) for advice. Where overhead lines cross your site you must comply with the requirements of Health & Safety Executive guidance as laid down in GS6, Avoidance of Danger from Overhead Electric Lines.

Where diversions to WPD apparatus are needed to allow change to occur on site, the cost of these alterations may be charged to the persons responsible for the works.

If you require advice in connection with your proposals please contact the relevant general enquiries number (see page 2 of this letter)

Following consultation the local Western Power Distribution team will where necessary prepare detailed proposals and provide a quotation for any necessary alterations and/or development of our equipment on the site.

Yours sincerely WPD Map Response Team

Western Power Distribution, Mapping Centre Toll End Road Tipton West Midlands United Kingdom DY4 0HH www.westernpower.co.uk

Map Response T 0121 623 9780 F 0121 623 9223 WPDMapResponse @westernpower.co.uk

LinesearchbeforeUdig

Help Desk 0845 437 7365

Western Power Distribution PLC South West - 02366894 South Wales - 02366985 East Midlands - 02366923 West Midlands - 03600574

Registered in England and Wales

Registered Office: Avonbank Feeder Road Bristol BS2 0TB

Contact Us

Emergency or Power Supply issues

In an emergency call 0800 6783 105, 24 hours a day.

Mapping Enquiries

If you have an enquiry relating to this letter or the attached map plan, please contact us using the following information:

 Telephone
 0121 623 9780

 Fax
 0121 623 9223

 Email
 WPDMapResponse@westernpower.co.uk

General Enquiries

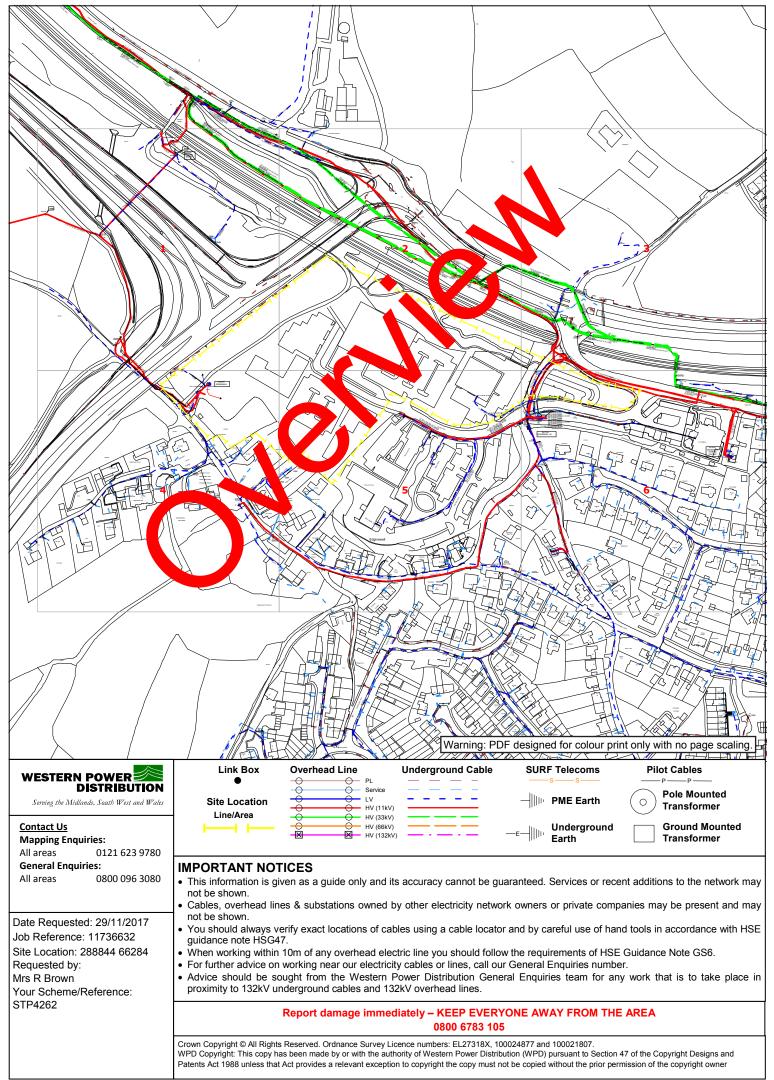
If you have a general enquiry, please call us on the following telephone number: All areas 0800 096 3080

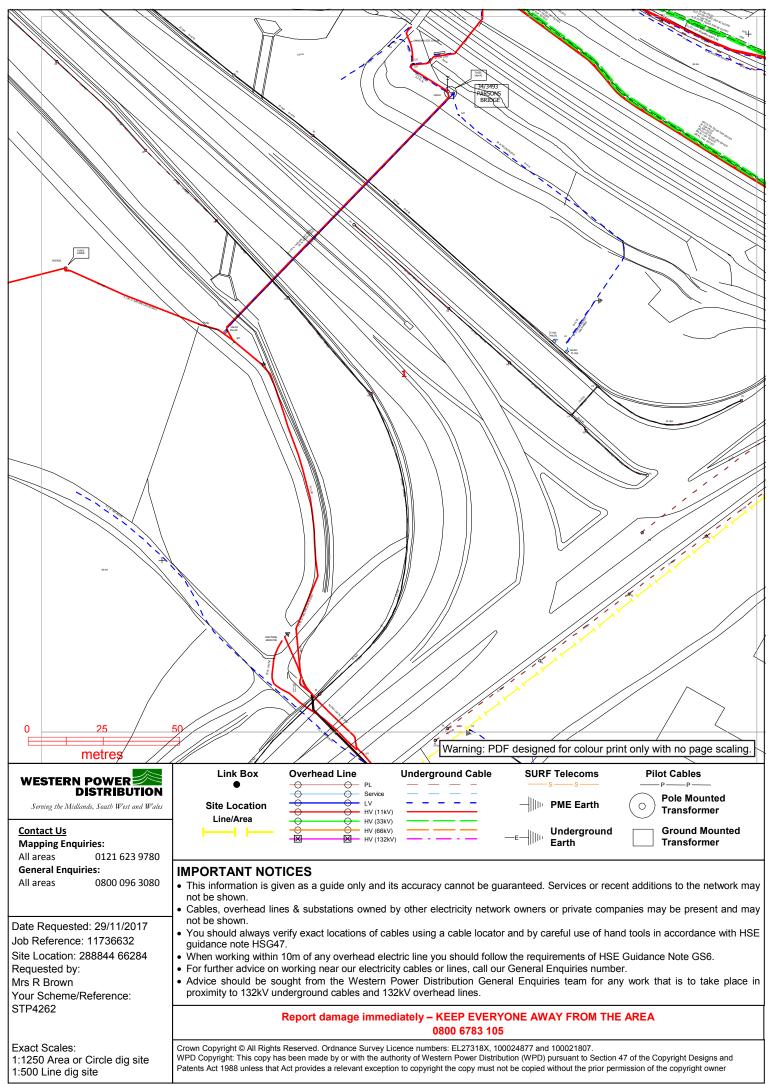
LinesearchbeforeUdig

If you have an enquiry relating to the use of the LinesearchbeforeUdig website please contact LinesearchbeforeUdig using the following information:

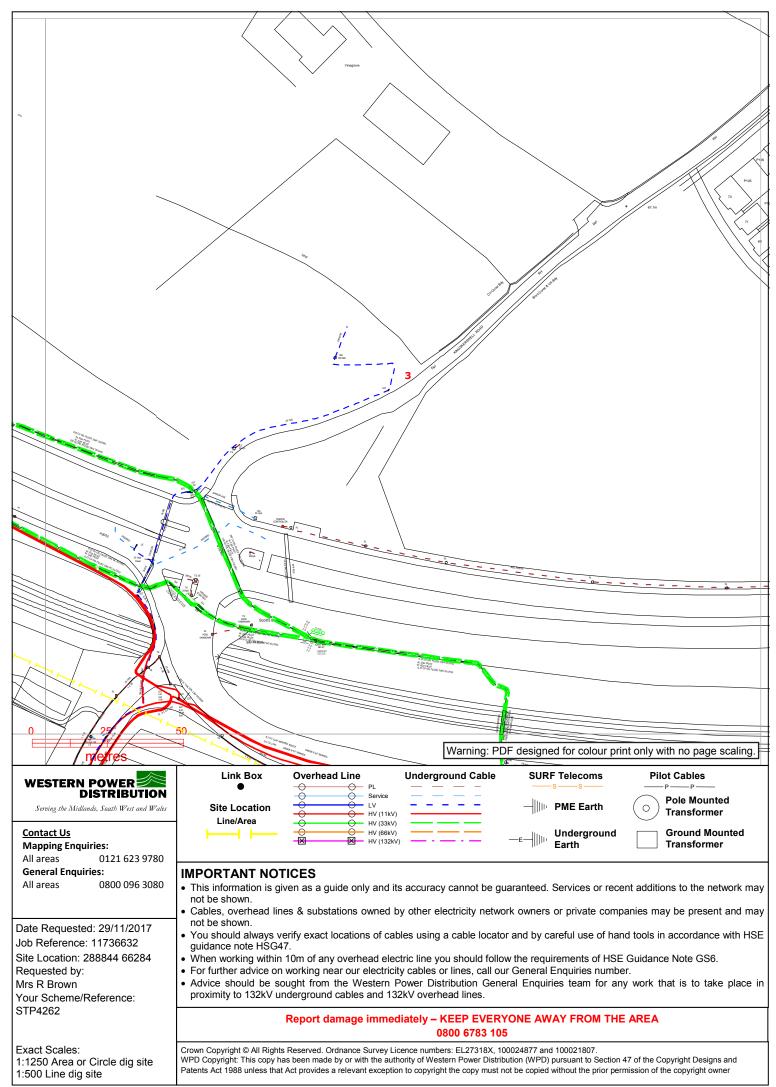
Telephone 0845 437 7365

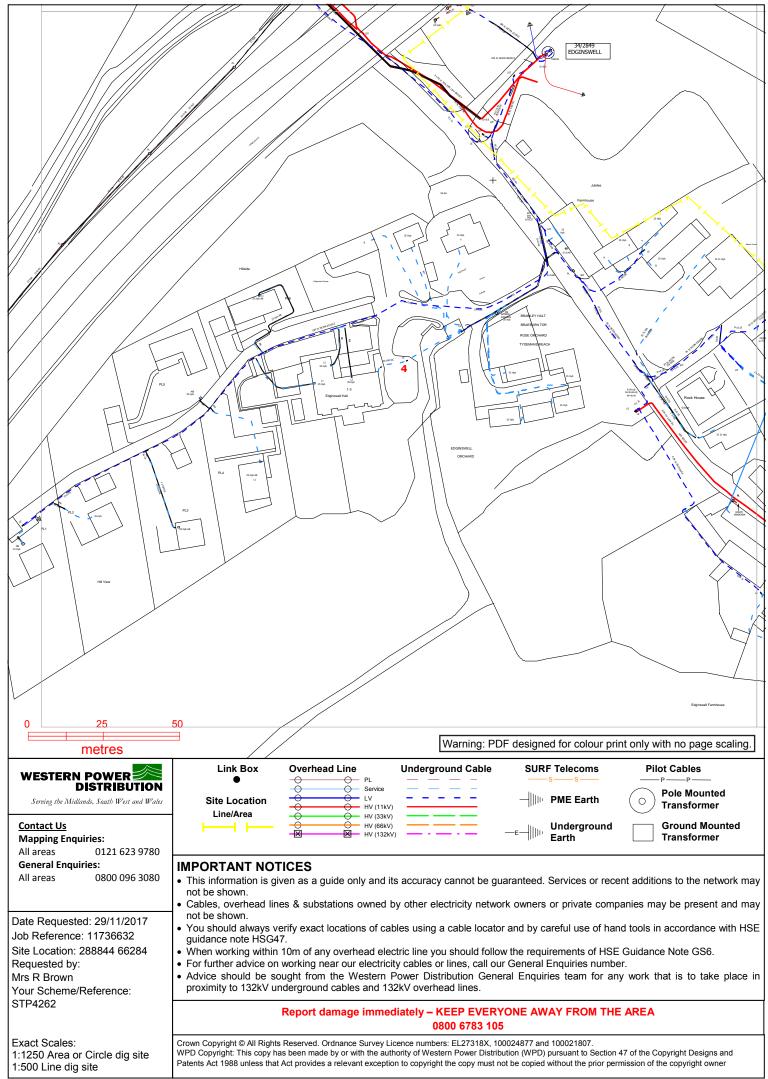
Email enquiries@linesearchbeforeudig.co.uk Website www.linesearchbeforeudig.co.uk

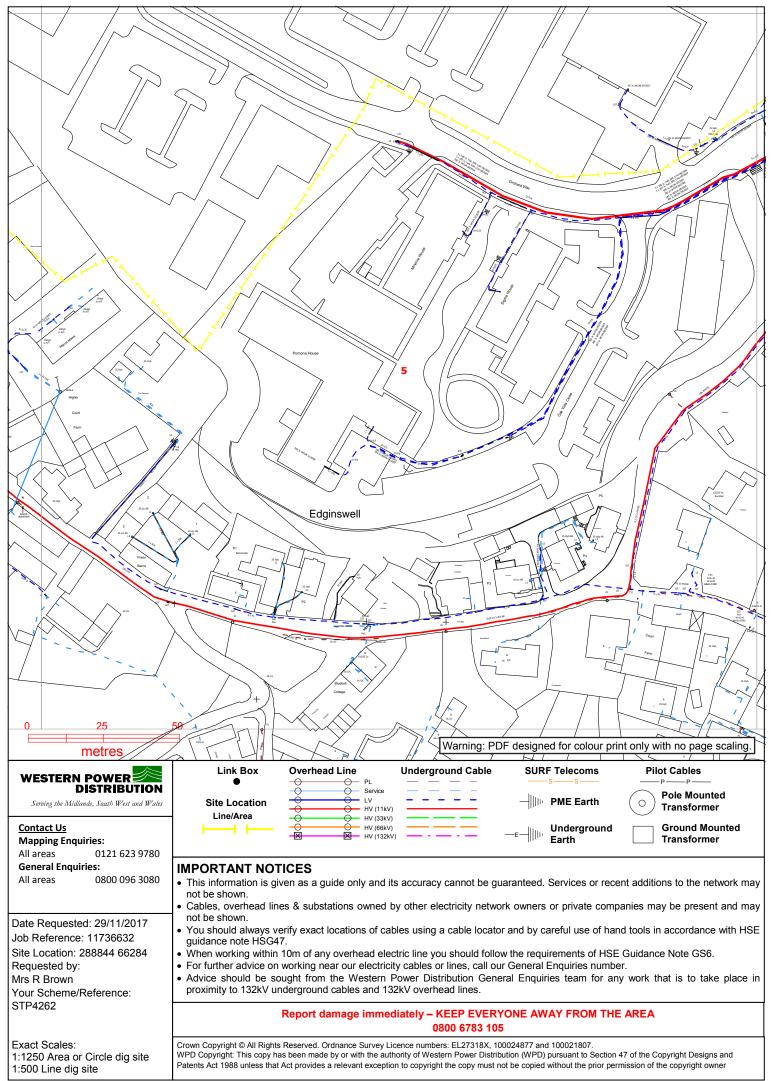

Steps to help keep you safe

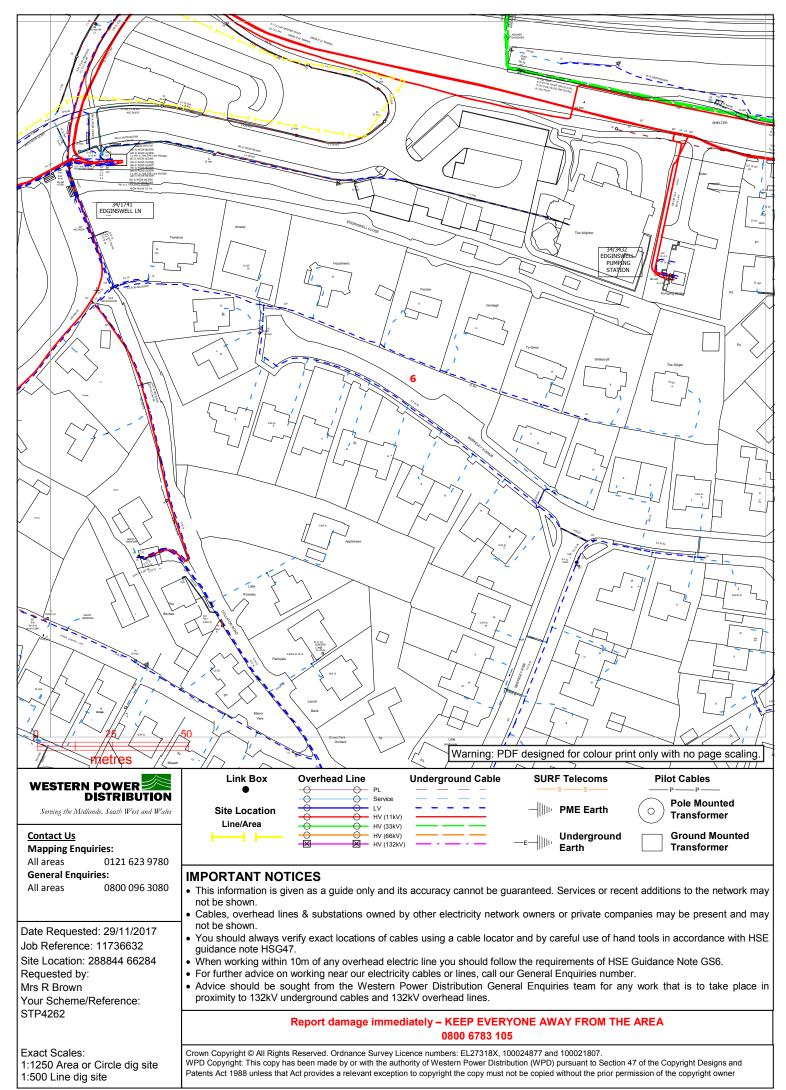

 If you are working within 10 metres of our 33kV, 66kV, 132kV underground electricity cables or within 10 metres of an overhead electricity line you should call the relevant General Enquiries for free safety advice.

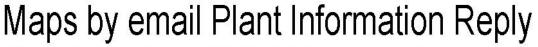
Safety Documents – please download our informative safety documents to help ensure that you, your staff and the public are kept safe whilst working in the vicinity of electricity. http://www.westernpower.co.uk/Health-and-Safety/Public-Safety

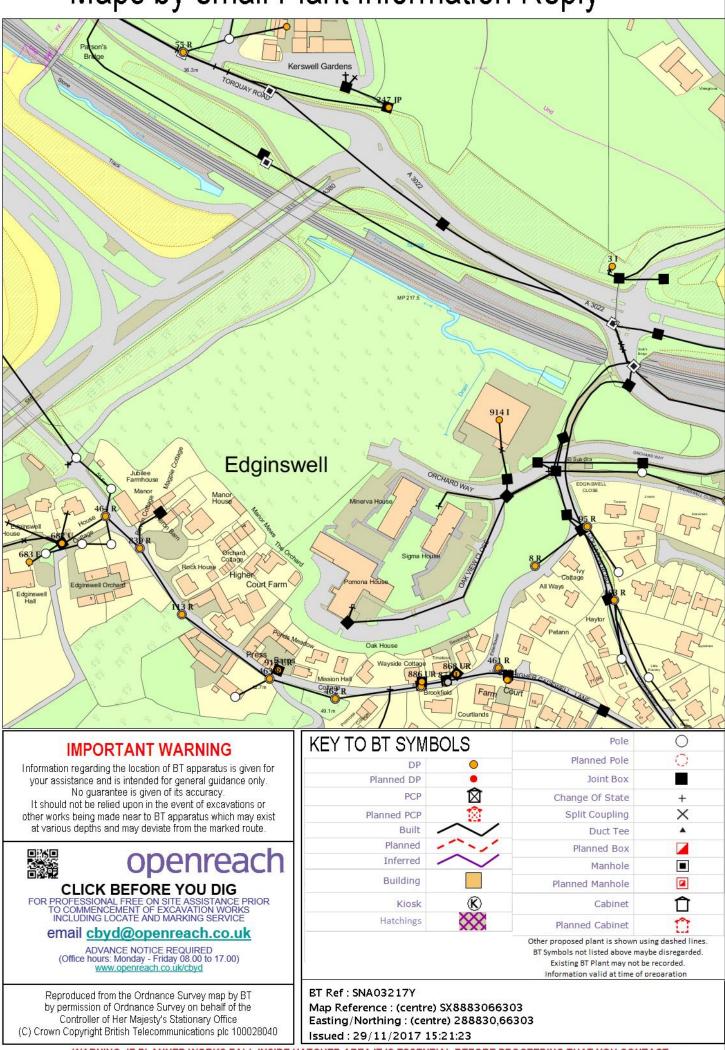

- Make sure you have up to date plans remember that recent additions to our network or service connections between the main cable and a building or street lamp may not be shown.
- Look for signs of service cables an electricity meter box or nearby streetlamp may give you an indication that service cables are present in your area of work.
- Non WPD Network electricity cables, lines and equipment owned by others may also be present in addition to WPD network. They are unlikely to be shown on our plans.
- Use a cable locator trace electricity cables and mark the position of them using paint or other waterproof marking on the ground.
- Hand dig trial holes to confirm the position of cables in close proximity to your area of your work and use spades and shovels rather than picks, pins or forks.
- **Have an emergency plan** so that everyone working on site understands what to do in the event of an underground electricity cable being damaged or contact being made with an overhead electricity line.
- If you are working within 10 metres of an overhead electricity line then it may be necessary for you to erect warning signs and markers, or height restriction goal posts. Ensure that you comply with the requirements of Health & Safety Executive guidance laid down in GS6, Avoidance of Danger from Overhead Electric Lines.
- If you are erecting a structure that could allow anyone standing on it, or its access device (ladder, scaffold, MEWP), to come within 3m of any overhead electric line then you must inform us. This is your duty and a legal requirement under the Electricity Safety, Quality & Continuity Regulations 2002.
- If you cannot work safely around the underground electricity cable or overhead electricity line, then you may need to get it moved to allow your works to go ahead. Call the general enquiry numbers above for guidance.
- It is possible that cables or pipes may be embedded in concrete electricity cables embedded in concrete MUST be made 'dead' by Western Power Distribution or the cable owner before the concrete is broken out. Alternatively, another safe way of working should be agreed.


Cables are sometimes covered by tiles or a marker tape - these can be concrete, polythene or earthenware and are a useful early warning of the presence of cables; you should avoid disturbing any tiles or tape to expose the cable. Not all cables have these warning indicators.






	Karseel Gadors
	N N N N N N N N N N N N N N N N N N N
	AN AND AND AND AND AND AND AND AND AND A
0 25	
metres	Warning: PDF designed for colour print only with no page scaling.
	Link Box Overhead Line Underground Cable SURF Telecoms Pilot Cables
Serving the Midlands, South West and Wales	Site Location \rightarrow \rightarrow $\downarrow \forall$ $ -$
Contact Us Mapping Enquiries:	HV (66kV) HV (66kV)
All areas 0121 623 9780	
General Enquiries:	IMPORTANT NOTICES
All areas 0800 096 3080	• This information is given as a guide only and its accuracy cannot be guaranteed. Services or recent additions to the network may not be shown.
	 Cables, overhead lines & substations owned by other electricity network owners or private companies may be present and may
Date Requested: 29/11/2017	not be shown.
Job Reference: 11736632	 You should always verify exact locations of cables using a cable locator and by careful use of hand tools in accordance with HSE guidance note HSG47.
Site Location: 288844 66284	• When working within 10m of any overhead electric line you should follow the requirements of HSE Guidance Note GS6.
Requested by: Mrs R Brown	 For further advice on working near our electricity cables or lines, call our General Enquiries number. Advice should be sought from the Western Power Distribution General Enquiries team for any work that is to take place in
Your Scheme/Reference:	proximity to 132kV underground cables and 132kV overhead lines.
STP4262	
	Report damage immediately – KEEP EVERYONE AWAY FROM THE AREA 0800 6783 105
Exact Scales:	Crown Copyright © All Rights Reserved. Ordnance Survey Licence numbers: EL27318X, 100024877 and 100021807.
1:1250 Area or Circle dig site	WPD Copyright: This copy has been made by or with the authority of Western Power Distribution (WPD) pursuant to Section 47 of the Copyright Designs and Patents Act 1988 unless that Act provides a relevant exception to copyright the copy must not be copied without the prior permission of the copyright owner
1:500 Line dig site	
	Plans generated by DigSAFE Pro (tm) software provided by LinesearchbeforeUdig



WARNING: IF PLANNED WORKS FALL INSIDE HATCHED AREA IT IS ESSENTIAL BEFORE PROCEEDING THAT YOU CONTACT THE NATIONAL NOTICE HANDLING CENTRE. PLEASE SEND E-MAIL TO: nnhc@openreach.co.uk

UNCONTROLLED WHEN PRINTED

Materials	Description	Key for Mains & Service Pipework
DI	Ductile Iron Main	Existing LP mains or service up to 75 millibar gauge
CI	Cast Iron Main	Proposed LP mains or servi up to 75 millibar gauge
ST	Steel main or service	Existing MP mains or service between 75 millibar and 2 ba
MDPE (17.6)	Medium Density Polyethylene (SDR Rating) main or service	Proposed MP mains or serv between 75 millibar and 2 ba
HDPE (11)	High Density Polyethylene (SDR Rating) main or service	Existing IP mains or services between 2 bar and 7 bar gau
Size	Description	Proposed IP mains or service between 2 bar and 7 bar gau
12"	Metallic main or service - Imperial (nominal bore)*	
150mm	Metallic main or service - Metric (nominal bore)	
3"	Polyethylene main or service - Imperial (nominal bore)	
90	Polyethylene main or service - Metric (outsidediameter)	
12:0 01:10	I 18" denotes the pipe size where the designation changes re to outside diameter	
Pressure	Description	ES PIPELINES
LP	Low Pressure - up to 75 millibar gauge	ES Pipelines
MP	Medium Pressure - between 75 millibar and 2 bar gauge	HAZELDEAN STATION ROAD

PRECAUTIONS TO BE TAKEN WHEN CARRYING OUT WORK IN THE VICINITY OF UNDERGROUND GAS PIPES

ADVICE TO SITE PERSONNEL

MANAGEMENT NOTE

Please ensure that a copy of this note is read by your site management and to your site operatives.

Early consultation with ESP Utilities Group prior to excavation is recommended to obtain the location of plant and precautions to be taken when working nearby.

This Guidance Note should be read in conjunction with the Health and Safety Executive guidance HSG47 "Avoiding danger from underground services".

Introduction

Damage to ESP Utilities Group's plant can result in uncontrolled gas escapes which may be dangerous. In addition these occurrences can cause expense, disruption of work and inconvenience to the public.

Various materials are used for gas mains and services. Cast Iron, Ductile Iron, Steel and Plastic pipes are the most widely found. Modern Plastic pipes are either bright yellow or orange in colour.

Cast Iron and Ductile Iron water pipes are very similar in appearance to Cast Iron and Ductile Iron gas pipes and if any Cast Iron or Ductile Iron pipe is uncovered, it should be treated as a gas pipe. ESP Utilities Group do not own any metallic gas pipes but their gas network infrastructures may be connected to Cast Iron, Ductile Iron or Steel pipes owned by Distribution Network Operators.

The following general precautions apply to Intermediate Pressure (2-7barg MOP), Medium Pressure (75mbarg-2barg MOP), Low Pressure (up to 75mbarg MOP) and other gas mains and services likely to be encountered in general site works and are referred to within this document as '**pipes**'.

Locating Gas Pipes

It should be assumed when working in urban and residential areas that gas mains and services are likely to be present. On request, ESP Utilities Group will give approximate locations of pipes derived from their records. The records do not normally show the position of service pipes but their probable line can be deducted from the gas meter position. ESP Utilities Group's staff will be pleased to assist in the location of gas plant and provide advice on any precautions that may be required. The records and advice are given in good faith but cannot be guaranteed until hand excavation has taken place. Proprietary pipe and cable locators are available although generally these will not locate plastic pipes.

Safe working Practices

To achieve safe working conditions adjacent to gas plant the following must be observed:

Observe any specific request made by ESP Utilities Group's staff.

Gas pipes must be located by hand digging before mechanical excavation. Once a gas pipe has been located, mechanical excavation must proceed **with care**. A mechanical excavator must not in any case be used within 0.5 metre of a gas pipe and greater safety distances may be advised by ESP Utilities Group depending on the mains maximum operating pressure (MOP).

Where heavy plant may have to cross the line of a gas pipe during construction work, the number of crossing points should be kept to a minimum. Crossing points should be clearly indicated and crossings at other places along the line of the pipe should be prevented.

Where the pipe is not adequately protected by an existing road, crossing points should be suitably reinforced with sleepers, steel plates or a specially constructed reinforced concrete raft as necessary. ESP Utilities Group staff will advise on the type of reinforcement necessary.

No explosives should be used within 30 metres of any gas pipe without prior consultation with ESP Utilities Group.

ESP Utilities Group <u>must</u> be consulted prior to carrying out excavation work within 10 metres of any above ground gas installation.

Where it is proposed to carry out piling or boring within 15 metres of any gas pipe, ESP Utilities Group should be consulted prior to the commencement of the works.

Access to gas plant must be maintained at all times during on site works.

Proximity of Other Plant

A minimum clearance of 300 millimetres (mm) should be allowed between any plant being installed and an existing gas main to facilitate repair, whether the adjacent plant be parallel to or crossing the gas pipe. No apparatus should be laid over and along the line of a gas pipe irrespective of clearance.

No manhole or chambers shall be built over or around a gas pipe and no work should be carried out which results in a reduction of cover or protection over a pipe, without consultation with ESP Utilities Group.

Support and Backfill

Where excavation of trenches adjacent to any pipe affects its support, the pipe must be supported to the satisfaction of ESP Utilities Group and must not be used as an anchor or support in any way. In some cases, it may be necessary to divert the gas pipe before work commences.

Where a trench is excavated crossing or parallel to the line of the gas pipe, the backfill should be adequately compacted, particularly beneath the pipe, to prevent any settlement which could subsequently cause damage to the pipe.

In special cases it may be necessary to provide permanent support to the gas pipe, before backfilling and reinstatement is carried out. Backfill material adjacent to gas plant must be selected fine material or sand, containing no stones, bricks or lumps of concrete, etc., placed to a minimum depth of 150mm around the pipes and well compacted by hand. No power compaction should take place until 300mm of selected fine fill has been suitably compacted.

If the road construction is in close proximity to the top of the gas pipe, a "cushion" of selected fine material such as sand must be used to prevent the traffic shock being transmitted to the gas pipe. The road construction depth must not be reduced without permission from the local Highway Authority.

No concrete or other hard material must be placed or left under or adjacent to any Cast Iron pipe as this may cause fracture of the pipe at a later date.

Concrete backfill should not be used closer than 300 mm to the pipe.

Damage to Coating

Where a gas pipe is coated with special wrapping and this is damaged, even to a minor extent ESP Utilities Group must be notified so that repairs can be made to prevent future corrosion and subsequent leakage.

Welding or "Hot Works"

When welding or other "hot works" involving naked flames are to be carried out in close proximity to gas plant and the presence of gas is suspected, ESP Utilities Group must be contacted before work commences to check the atmosphere. Even when a gas free atmosphere exists care must be taken when carrying out hot works in close proximity to gas plant in order to ensure that no damage occurs.

Particular care must be taken to avoid damage by heat or naked flame to plastic gas pipes or to the protective coating on other gas pipes.

Leakage from Gas Mains or Services

If damage or leakage is caused or an escape of gas is smelt or suspected the following action should be taken at once:

- Remove all personnel from the immediate vicinity of the escape;
- Contact the National Gas Emergency Service on: 0800 111 999;
- Prevent any approach by the public, prohibit smoking, extinguish all naked flames or other source of ignition for at least 15 metres from the leakage;
- Assist gas personnel, Police or Fire Service as requested.

REMEMBER - IF IN DOUBT; SEEK ADVICE FROM ESP UTILITIES GROUP.

ESP Utilities Group can be contacted at:

Office Address: Bluebird House, Mole Business Park, Leatherhead, Surrey, KT22 7BA

Office Tel: 01372 587 500; Fax: 01372 377 996

UNCONTROLLED WHEN PRINTED

From:	Tom Whiffin
To:	Darryl Neylon
Subject:	Torbay environmental email
Date:	15 February 2018 15:28:54
Attachments:	image001.png
	STP4262 EC Aerial Photo dif

From: Griffiths, Katharine [mailto:Katharine.Griffiths@torbay.gov.uk]
Sent: 29 January 2018 14:46
To: Tom Whiffin <Tom.Whiffin@soiltechnics.net>
Subject: FW: Ground Investigation

Dear Tom,

I have been forwarded your email with regards to the proposed development of a site in Edginswell.

The site and surrounding area are not considered " contaminated land " as defined by part 2A of the EPA 1990, nor is any further action being considered under the same legislation. I am unaware of any remediation work being carried out in the vicinity.

From the information that we hold there are no landfills at that site.

If you require any further information then please let me know.

Kind regards

Katharine Griffiths Senior Environmental Protection Officer

Community Safety C/o Torquay Town Hall Castle Circus Torquay TQ1 3DR

Tel: 01803 208025 Fax: 01803 208854

From: NaturalEnvironment
Sent: 29 January 2018 13:05
To: Griffiths, Katharine <<u>Katharine.Griffiths@torbay.gov.uk</u>>
Subject: FW: Ground Investigation

Hi Katharine

Can you have a look at this enquiry?

Thanks

Jenny Plumb Technical Administrator Torbay Council, Natural Environment Services C/O Town Hall, Torquay, Devon TQ1 3DR Internal Tel (01803) 207632 External Tel (01803) 207797 Fax (01803) 207639

This email and any attachments are intended solely for the use of the intended recipient(s) and may contain confidential information and/or may be legally privileged. If you have received this email in error, please notify the sender immediately and delete this email

From: Tom Whiffin [mailto:Tom.Whiffin@soiltechnics.net]
Sent: 29 January 2018 12:04
To: NaturalEnvironment <<u>NaturalEnvironment@torbay.gov.uk</u>>
Subject: Ground Investigation

This e-mail is for the attention of an environmental health/ contaminated land officer.

Good morning,

We are undertaking a ground investigation for a proposed development of a site in Edginswell, West side of Collation road, Torquay TQ27JD - and would like to ask the following questions: -

I would like to know if you are aware of the site, and if any adjacent areas are recorded on the contaminated land register? Also, if there are any contaminated sites present, has any remedial action taken place, and are there any landfill sites close to the site (old or present) with which you are aware of?

I have attached an aerial photo for your reference. If you could respond back at your earliest convenience it would be greatly appreciated.

Kind Regards,

Tom Whiffin

B.Sc.(Hons)., FGS Graduate Geo-environmental Engineer

m 07712517345 e tom.whiffin@soiltechnics.net w www.soiltechnics.net

st

?

Head Office

Cedar Barn, White Lodge, Walgrave, Northamptonshire NN6 9PY t 01604 781877

Manchester Office

Ivy Mill Business Centre, Crown Street, Failsworth, Manchester M35 9BG t 0161 9470270

The information in this e-mail is confidential and may be legally privileged or prohibited from disclosure and unauthorised use. It is intended solely for the addressee, or the employee or agent responsible for delivering such materials to the addressee, and access to this e-mail by anyone else is unauthorised. If you are not the intended recipient, any form of reproduction, dissemination, copying, disclosure, modification, distribution and/or publication or any action taken or omitted to be taken in reliance upon this message or its attachments is prohibited and may be unlawful. At present the integrity of e-mail across the Internet cannot be guaranteed and messages sent via this medium are potentially at risk. We will therefore not accept liability for any claims arising as a result of the use of this medium.

Please note ...

Communications with Torbay Council may be monitored and/or recorded for lawful purposes. This email is confidential and may also be privileged. If you are not the intended recipient please notify the sender and delete the message from your system immediately. The views in this message are personal; they are not necessarily those of Torbay Council.

Envirocheck[®] Report:

Datasheet

Order Details:

Order Number: 148421159_1_1

Customer Reference: STP4262

National Grid Reference: 288840, 66300

Slice:

Site Area (Ha): 0.97

Search Buffer (m): 1000

Site Details:

Land at Edginswell Torquay

Client Details:

Ms R Brown Soiltechnics Cedar Barn White Lodge Walgrave Northampton NN6 9PY

Contents

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	27
Hazardous Substances	-
Geological	32
Industrial Land Use	35
Sensitive Land Use	-
Data Currency	44
Data Suppliers	49
Useful Contacts	50

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2017. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup & Partners Limited (for further information, contact mining review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Report Version v53.0

environmental and geotechnical consultants

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1		4	8	7
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 6				2
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature		Yes			
Pollution Incidents to Controlled Waters	pg 6		3	4	8
Prosecutions Relating to Authorised Processes					
Registered Radioactive Substances					
River Quality	pg 9		1	1	
River Quality Biology Sampling Points	pg 9			1	
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register	pg 10			1	1
Water Abstractions	pg 10		3		(*17)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 15	Yes	n/a	n/a	n/a
Drift Deposits			n/a	n/a	n/a
Bedrock Aquifer Designations	pg 15	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 15	Yes	n/a	n/a	n/a
Source Protection Zones					
Extreme Flooding from Rivers or Sea without Defences	pg 15	Yes	Yes	n/a	n/a
Flooding from Rivers or Sea without Defences	pg 15	Yes	Yes	n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 16	1	10	18	63

environmental and geotechnical consultants

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites	pg 27		1	1	1
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)	pg 27			1	
Licensed Waste Management Facilities (Locations)	pg 27		1	3	1
Local Authority Landfill Coverage		1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites					
Potentially Infilled Land (Non-Water)					
Potentially Infilled Land (Water)	pg 28				3
Registered Landfill Sites	pg 29		2	2	1
Registered Waste Transfer Sites	pg 31			1	1
Registered Waste Treatment or Disposal Sites					
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					

environmental and geotechnical consultants

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Geological					
BGS 1:625,000 Solid Geology	pg 32	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 32	Yes	Yes		
BGS Recorded Mineral Sites	pg 32		1		1
BGS Urban Soil Chemistry					
BGS Urban Soil Chemistry Averages					
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas			n/a	n/a	n/a
Mining Instability			n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain	pg 33		Yes	n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 33	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 33	Yes		n/a	n/a
Potential for Ground Dissolution Stability Hazards	pg 33		Yes	n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 33	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 33	Yes	Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 34	Yes		n/a	n/a
Radon Potential - Radon Affected Areas	pg 34	Yes	n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 35		4	9	42
Fuel Station Entries	pg 39				2
Points of Interest - Commercial Services	pg 39				11
Points of Interest - Education and Health	pg 40				1
Points of Interest - Manufacturing and Production	pg 40		1	1	2
Points of Interest - Public Infrastructure	pg 41		2		5
Points of Interest - Recreational and Environmental	pg 41		2	1	12
Gas Pipelines	pg 43			1	
Underground Electrical Cables					

environmental and geotechnical consultants

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Ancient Woodland					
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones					
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (NW)	0	1	288800 66350
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding to Occur at Surface	A13NW (N)	0	1	288842 66303
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (N)	34	1	288842 66400
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding to Occur at Surface	A13NW (NW)	35	1	288800 66400
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A13SE (SE)	82	1	288950 66200
	BGS Groundwater	Flooding Susceptibility	(3=)			
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (N)	85	1	288800 66450
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A13SW (S)	87	1	288842 66150
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding to Occur at Surface	A13NW (N)	135	1	288800 66500
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SE (E)	141	1	289050 66250
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding to Occur at Surface	A13SE (E)	188	1	289100 66250
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	210	1	289000 66500
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A13SW (SW)	296	1	288600 66050
	BGS Groundwater	Flooding Susceptibility	(011)			
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A8NW (S)	297	1	288800 65950
	BGS Groundwater	Flooding Susceptibility	×-1			
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A8NW (SW)	491	1	288550 65850
	Discharge Consent	ts				
1	Operator: Property Type:	South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY)	A13SE (E)	42	2	288960 66290
	Location:	Ivy Cottage Pumping Station Scott'S Bridge, Newton Road, Torquay, Devon, Tq2 7jn				
	Authority: Catchment Area:	Environment Agency, South West Region Tidal Teign & Torbay, Devon				
	Reference:	201623				
	Permit Version: Effective Date:	2 31st March 2017				
	Issued Date:	31st March 2017				
	Revocation Date:	Not Supplied				
	Discharge Type: Discharge	Public Sewage: Storm Sewage Overflow Freshwater Stream/River				
	Environment:					
	Receiving Water: Status:	Trib Of Aller Brook Varied under EPR 2010				
		Located by supplier to within 10m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consent	S				
1	Operator: Property Type: Location:	South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Ivy Cottage Pumping Station Scott'S Bridge, Newton Road, Torquay, Devon, Tq2 7jn	A13SE (E)	42	2	288960 66290
	Authority: Catchment Area: Reference: Permit Version:	Environment Agency, South West Region Tidal Teign & Torbay, Devon 201623 2				
	Effective Date: Issued Date: Revocation Date: Discharge Type:	31st March 2017 31st March 2017 Not Supplied Sewage Discharges - Pumping Station - Water Company				
	Discharge Environment: Receiving Water: Status:	Freshwater Stream/River Trib Of Aller Brook Varied under EPR 2010				
	Positional Accuracy:	Located by supplier to within 10m				
	Discharge Consent	S				
1	Operator: Property Type: Location:	South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Ivy Cottage Pumping Station Scott'S Bridge, Newton Road, Torquay, Devon, Tq2 7jn	A13SE (E)	52	2	288970 66290
	Authority: Catchment Area: Reference: Permit Version: Effective Date:	Environment Agency, South West Region Tidal Teign & Torbay, Devon 201623 1 23rd October 2000				
	Issued Date: Revocation Date: Discharge Type: Discharge	23rd October 2000 30th March 2017 Public Sewage: Storm Sewage Overflow Freshwater Stream/River				
	Environment: Receiving Water: Status:	Aller Brook (S) New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995)				
	Positional Accuracy:	Located by supplier to within 10m				
	Discharge Consent					
2	Operator: Property Type: Location:	Devon Garden Machinery DOMESTIC PROPERTY (SINGLE) (INCL FARM HOUSE) Dwelling At Kerswell Gardens Kerswell Gardens, Newton Road, Torquay, Devon	A13NW (N)	167	2	288780 66530
	Authority: Catchment Area: Reference: Permit Version:	Environment Agency, South West Region Tidal Teign & Torbay, Devon 002956/Sa/01 1				
	Effective Date: Issued Date: Revocation Date: Discharge Type:	11th September 1996 11th September 1996 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company				
	Discharge Environment: Receiving Water:	Land/Soakaway Soakaway				
	Status:	Varied by Application - (Water Resources Act 1991, Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m				
	Discharge Consent	S				
3	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Scotts Bridge Pumping Station, Newton Road, Torquay, Devon, Tq2 7jn Environment Agency, South West Region Tidal Teign & Torbay, Devon 201624 2	A13SE (E)	270	2	289180 66230
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment:	16th September 2016 16th September 2016 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River				
	Receiving Water: Status:	Aller Brook Varied under EPR 2010 Located by supplier to within 10m				

Map ID		Details		Estimated Distance From Site	Contact	NGR
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Scotts Bridge Pumping Station, Newton Road, Torquay, Devon, Tq2 7jn Environment Agency, South West Region Tidal Teign & Torbay, Devon 201624 2 16th September 2016 16th September 2016 Not Supplied Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River Aller Brook Varied under EPR 2010 Located by supplier to within 10m	A13SE (E)	270	2	289180 66230
3		South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Scotts Bridge Pumping Station, Newton Road, Torquay, Devon, Tq2 7jn Environment Agency, South West Region Tidal Teign & Torbay, Devon 201624 1 23rd October 2000 23rd October 2000 15th September 2016 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Aller Brook (S) New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A13SE (E)	270	2	289180 66230
4	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Newton Abbot (Newton Road) Environment Agency, South West Region Tidal Teign & Torbay, Devon Nra-Sw-1392 1 30th October 1989 30th October 1989 23rd October 1989 23rd October 2000 Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Aller Brook Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A14SW (E)	280	2	289190 66230
5	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s South West Water Limited Not Given Edginswell Pumping Station, Torquay, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon DRA 1199/1/21 Not Supplied Not Supplied 10th March 1969 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Aller Brook Not Supplied Located by supplier to within 100m	A12NE (W)	379	2	288400 66400

Map ID		Details		Estimated Distance From Site	Contact	NGR
	Discharge Consent	S				
5	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Edginswell Pumping Station, Torquay, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon Dra 1199 1 10th March 1969 10th March 1969 16th September 2016 Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River Aller Brook Surrendered under EPR 2010 Located by supplier to within 100m	A12NE (W)	379	2	288400 66395
5	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s South West Water PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Edginswell Pumping Station, Torquay, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon Dra 1199 1 10th March 1969 10th March 1969 16th September 2016 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Aller Brook Surrendered under EPR 2010 Located by supplier to within 100m	A12NE (W)	379	2	288400 66400
	Discharge Consent	S				
5	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr J F Harper DOMESTIC PROPERTY (MULTIPLE) (INCL FARM HOUSES) Odicknoll Cottage, Odicknoll Farmhouse, And Springfield Barn, Edginswell Lane, Edginswell, Torquay, Devon, Tq2 7jf Environment Agency, South West Region Tidal Teign & Torbay, Devon 202478 1 27th May 2002 28th May 2002 28th May 2002 28th May 2002 28th May 2002 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River River/Stream Non Tidal New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A12NE (W)	409	2	288370 66400
	Discharge Consent					
6	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr & Mrs Whiteway-Wilkinson REAL ESTATE ACTIVITIES/BUYING/SELLING/RENTING Coventry Farm Estate, Newton Road, Torquay, Devon, Tq2 7hx Environment Agency, South West Region Tidal Teign & Torbay, Devon Nra-Sw-7720 1 17th November 1995 17th November 1995 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Aller Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A17SE (NW)	519	2	288420 66725

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consent	S				
6	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr & Mrs S D Rountree Industrial Parks & Estates Coventry Farm Estate , Newton Road, TORQUAY, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon NRA-SW-7720;2/1 Not Supplied Not Supplied 17th November 1995 Not Supplied Sewage Effluent Discharge-Treated Effluent Freshwater Stream/River Aller Brook, Licence Status: Lapsed, Revoked Or Cancelled Not Supplied Located by supplier to within 100m	A17SE (NW)	523	2	288420 66730
	Discharge Consent	S				
7	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Environment: Receiving Water: Status:	Ganders Park Ltd DOMESTIC PROPERTY (MULTIPLE) (INCL FARM HOUSES) Ganders Park, Edginswell Lane, Torquay, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon Nra-Sw-6733 1 14th July 1994 14th July 1994 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Unnamed Trib To Aller Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995)	A12NE (NW)	554	2	288300 66630
	Positional Accuracy:	Located by supplier to within 100m				
	Discharge Consent	S				
8	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	J Sainsbury Plc FOOD+BEVERAGE SERVICES/CAFE/RESTAURANT/PUB Sainsbury Superstore (Torquay), Scotts Bridge, Torquay, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon Nra-Sw-3195 1 7th October 1991 7th October 1991 Not Supplied Miscellaneous Discharges - Mine / Groundwater As Raised Freshwater Stream/River Trib To River Teign New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A14NW (E)	611	2	289500 66500
	Discharge Consent					
9	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	J Sainsbury Plc FOOD+BEVERAGE SERVICES/CAFE/RESTAURANT/PUB Sainsbury Superstore (Torquay), Scotts Bridge, Torquay, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon Nra-Sw-3194 1 7th October 1991 7th October 1991 7th October 1991 7th October 1991 Not Supplied Trade Effluent Discharge-Site Drainage Freshwater Stream/River Trib To Aller Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A14NE (E)	779	2	289670 66520

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
10	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s A Mallinson FARMS (NOT HOUSE)/CROP + ANIMAL REARING/PLANT NURSERY Barton Hall Farm, Newton Abbot, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon Dra 919 1 16th January 1968 16th October 1967 2nd September 1998 Trade Discharges - Process Effluent - Water Company (Wtw) Freshwater Stream/River Trib Of River Tiegn Transferred from Rivers (Prevention of Pollution) Act 1951-1961 Located by supplier to within 100m	A19NW (NE)	969	2	289300 67200
11	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s South West Water STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Greyhound Stadium Site, Kingskerswell, Devon Environment Agency, South West Region Tidal Teign & Torbay, Devon Nra-Sw-1873 1 1st August 1990 1st August 1990 19th November 1999 Miscellaneous Discharges - Mine / Groundwater As Raised Freshwater Stream/River Aller Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A17NW (NW)	991	2	288120 67090
12	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Kingskerswell Service Station Torquay Road, Kingskerswell, NEWTON ABBOT, Devon, TQ Teignbridge District Council, Environmental Health Department 1811010012000 8th April 1999 Local Authority Pollution Prevention and Control PG1/14 Petrol filling station Permitted Manually positioned to the address or location	A17SE (NW)	689	3	288320 66863
13	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Iution Prevention and Controls J Sainsburys Nicholson Road, TORQUAY, Devon, TQ2 7HT Torbay Council, Environmental Services 2006-15 14th January 1999 Local Authority Pollution Prevention and Control PG1/14 Petrol filling station Authorisation revokedRevoked Manually positioned to the address or location	A14NE (E)	746	4	289627 66545
	Nearest Surface Wa	iter Feature	A13SE (SE)	0	-	288887 66260
14	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Location Description Not Available Environment Agency, South West Region Rubble/Litter Or Solids Not Supplied 27th May 1994 62014937 Tidal Teign & Torbay, Devon Freshwater Stream/River Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A13NW (NW)	35	2	288800 66400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
15	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Public Highway: Surface Runoff Location Description Not Available Environment Agency, South West Region Oils - Other Oil Not Supplied 20th September 1993 62008185 Tidal Teign & Torbay, Devon Freshwater Stream/River Runoff Category 3 - Minor Incident Located by supplier to within 100m	A13SE (E)	97	2	289000 66250
16	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given Location Description Not Available Environment Agency, South West Region Unknown Not Supplied 20th June 1991 62002661 Tidal Teign & Torbay, Devon Freshwater Stream/River Unknown Category 3 - Minor Incident Located by supplier to within 100m	A13SW (SW)	116	2	288700 66200
17	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Public Highway: Surface Runoff Location Description Not Available Environment Agency, South West Region Oils - Diesel (Including Agricultural) Weather 15th July 1993 62008436 Tidal Teign & Torbay, Devon Freshwater Stream/River Storm Water Discharge Category 3 - Minor Incident Located by supplier to within 100m	A14SW (E)	299	2	289200 66200
18	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Location Description Not Available Environment Agency, South West Region Oils - Other Oil Not Supplied 4th June 1992 62006072 Tidal Teign & Torbay, Devon Freshwater Stream/River Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A14SW (E)	379	2	289300 66300
19	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Location Description Not Available Environment Agency, South West Region Surface Water Non-Water Company Land Drainage Work 5th February 1991 62001866 Tidal Teign & Torbay, Devon Freshwater Stream/River Leakage Category 2 - Significant Incident Located by supplier to within 100m	A14SW (E)	479	2	289400 66300
19	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Location Description Not Available Environment Agency, South West Region Surface Water Poor Operational Practise 23rd January 1991 62001856 Tidal Teign & Torbay, Devon Freshwater Stream/River Other Cause Category 3 - Minor Incident Located by supplier to within 100m	A14SW (E)	479	2	289400 66295

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
20	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Private Sewage (Non-PLC): Sewage Treatment Works Location Description Not Available Environment Agency, South West Region Other Chemicals Poor/Inadequate Maintenance 15th July 1995 62011363 Tidal Teign & Torbay, Devon Freshwater Stream/River Direct Discharge Category 3 - Minor Incident Located by supplier to within 100m	A17SE (NW)	530	2	288410 66730
21	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Building Sites Location Description Not Available Environment Agency, South West Region Surface Water Poor Operational Practise 27th January 1993 62007625 Tidal Teign & Torbay, Devon Freshwater Stream/River Runoff Category 3 - Minor Incident Located by supplier to within 100m	A14SW (E)	579	2	289500 66300
22	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Location Description Not Available Environment Agency, South West Region Oils - Waste Oil Poor Management Control 23rd June 1991 62002669 Tidal Teign & Torbay, Devon Freshwater Stream/River Runoff Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	679	2	289600 66300
23	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Location Description Not Available Environment Agency, South West Region Oils - Waste Oil Poor Operational Practise 2nd May 1991 62002637 Tidal Teign & Torbay, Devon Freshwater Stream/River Leakage Category 3 - Minor Incident Located by supplier to within 100m	A14NE (E)	706	2	289600 66500
24	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Industrial: Other Location Description Not Available Environment Agency, South West Region Oils - Waste Oil Poor/Inadequate Maintenance 12th August 1992 62006876 Tidal Teign & Torbay, Devon Freshwater Stream/River Overflow Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	879	2	289800 66295
24	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Acid Processes Location Description Not Available Environment Agency, South West Region Other Trade Effluent Mechanical/Electrical Plant Failure 3rd July 1990 62000135 Tidal Teign & Torbay, Devon Freshwater Stream/River Overflow Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	879	2	289800 66300

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
25	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Surface Water Sewers Location Description Not Available Environment Agency, South West Region Oils - Other Oil Inadequate Design/Capacity 14th August 1992 62006878 Tidal Teign & Torbay, Devon Freshwater Stream/River Runoff Category 3 - Minor Incident Located by supplier to within 100m	A14SE (E)	886	2	289800 66200
26	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Water Company Sewage: Sewerage Location Description Not Available Environment Agency, South West Region Crude Sewage Act Of God 4th September 1994 62017572 Tidal Teign & Torbay, Devon Freshwater Stream/River Overflow Category 2 - Significant Incident Located by supplier to within 100m	A9SE (SE)	964	2	289600 65600
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Rate: Flow Type: Year:	Aller B (Teign) River Quality A Edginswell Pumping Stn-Kingskerswell 1.9 Flow less than 0.31 cumecs River 2000	A13NE (N)	13	2	288863 66360
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Aller B (Teign) River Quality A Source-Edginswell Pumping Station 1.2 Flow less than 0.31 cumecs River 2000	A14NW (E)	448	2	289368 66322
27	River Quality Biolog Name: Reach: Estimated Distance:	gy Sampling Points Aller Brook (Teign) Edginswell Pumping Station To Kingskerswell	A14SW (E)	403	2	289320 66250

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
28	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - South West Region, Devon and Cornwall Area 4th July 2005 326496 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Crude Sewage	A13SE (E)	268	2	289176 66226
29	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Environment Agency - South West Region, Devon and Cornwall Area 24th June 2014 1248884 Category 4 - No Impact Category 4 - No Impact Category 2 - Significant Incident Located by supplier to within 10m Specific Waste Materials: Contaminated Construction & Demolition Material & Waste	A18SE (N)	528	2	288930 66879
30	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	HAS BEEN ALLOCATED FOR 14460030477 Not Supplied Kerswell Gardens, TORQUAY Environment Agency, South West Region Agricultural Spray Irrigation (Summer) Not Supplied Spring 454.60 9092.00 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A13NW (N)	135	2	288800 66500
31	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	THE LANDSCAPE COMPANY 14460030723 Not Supplied Kerswell Gardens, Newton Road, TORQUAY Environment Agency, South West Region Agricultural Spray Irrigation (Summer) Not Supplied Borehole 181.80 4318.00 1 March To 30 November Incl; Depth 55M Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A13NW (NW)	166	2	288700 66495
31	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Landscape Company (South West) Ltd 14/46/003/0723 100 Kerswell Borehole Environment Agency, South West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Kerswell Gardens, Newton Road, Torquay 01 March 30 November 19th December 1995 Not Supplied Located by supplier to within 100m	A13NW (NW)	171	2	288700 66500

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	Mr J Isaac 14/46/003/0056 100 Home Farm, Well Environment Agency, South West Region General Farming And Domestic Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Home Farm Lands, Kingskerswell, Newton Abbot, Devon 01 January 31 December 27th May 1966 Not Supplied	A19NE (NE)	1113	2	289700 67100
	-	Located by supplier to within 100m				
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Mr & Mrs J L Bell 14460030499 Not Supplied Lands At, Aller Brook House, COFFINSWELL Environment Agency, South West Region Agricultural Spray Irrigation (Summer) Not Supplied River 21.80 2045.00 These Two Points; 1696 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A24NW (N)	1547	2	289400 67795
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	MR & MRS J L BELL 14460030499 Not Supplied Lands At, Aller Brook House, COFFINSWELL Environment Agency, South West Region Agricultural Spray Irrigation (Summer) Not Supplied River 21.80 2045.00 Aller Brook Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A24NW (N)	1552	2	289400 67800
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	West End Nurseries 14/46/003/0894 100 West End Nurseries Borehole Environment Agency, South West Region Golf Courses: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied West End Nurseries, Marldon 01 January 31 December 17th June 1997 Not Supplied Located by supplier to within 10m	A6SW (SW)	1665	2	287320 65480

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End:	West End Nurseries (Newton Abbot) Ltd 14/46/003/0894 101 West End Nurseries Borehole Environment Agency, South West Region Golf Courses: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied West End Nurseries, Marldon 01 January 31 December	A6SW (SW)	1676	2	287380 65360
	Permit Start Date: Permit End Date:	11th May 2004 Not Supplied Located by supplier to within 10m				
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Postional Accuracy:	Otter Nurseries Limited 14/46/003/0894 103 West End Nurseries Borehole Environment Agency, South West Region Horticulture And Nurseries: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied West End Nurseries, Marldon 01 April 31 March 19th October 2015 Not Supplied Located by supplier to within 10m	A6SW (SW)	1679	2	287375 65362
	Water Abstractions					
	-	West End Nurseries (Newton Abbot) Ltd 14/46/003/0894 102 West End Nurseries Borehole Environment Agency, South West Region Horticulture And Nurseries: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied West End Nurseries, Marldon 01 April 31 March 1st April 2014 Not Supplied Located by supplier to within 10m	A6SW (SW)	1679	2	287375 65362
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised Start: Authorised Start: Permit Start Date: Permit End Date: Positional Accuracy:	TORQUAY LAUNDRIES 14460030299 Not Supplied Torquay Laundries Ltd, Hele Cross, Barton Hill Road, TORQUAY Environment Agency, South West Region Industrial Processing (Miscellaneous) Not Supplied Borehole 54.50 16818.00 Laundry; Depth 80M Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	(E)	1692	2	290600 66100

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr & Mrs J L Bell 14/46/003/0498 100 Aller Brook House, Well Environment Agency, South West Region General Farming And Domestic Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Lands At, Aller Brook House, Coffinswell 01 January 31 December 20th October 1987 Not Supplied Located by supplier to within 100m	A24NE (NE)	1727	2	289600 67900
		HAS BEEN ALLOCATED FOR 14460030013 Not Supplied S Devon Co-Op, TORQUAY Environment Agency, South West Region Industrial Processing (Food And Drink) Not Supplied Borehole 118.20 25003.00 Depth 76M Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	(E)	1791	2	290700 66100
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Rowcroft House Foundation Ltd 14/46/003/0825 100 Bearnes, Borehole Environment Agency, South West Region Horticulture And Nurseries: General Use (Medium Loss) Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Premises Of Rowcroft House Foundation Ltd, Torquay 01 January 31 December 1st April 2008 Not Supplied Located by supplier to within 10m	A5SW (SE)	1926	2	290100 64750
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Rowcroft House Foundation Ltd 14/46/003/0825 100 Bearnes, Borehole Environment Agency, South West Region Commercial/Industrial/Public Services: Drinking; Cooking; Sanitary; Washing; (Small Garden) Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Premises Of Rowcroft House Foundation Ltd, Torquay 01 January 31 December 1st April 2008 Not Supplied Located by supplier to within 10m	A5SW (SE)	1926	2	290100 64750

Map ID		Details		Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Bearnes 14/46/003/0825 100 Bearnes, Borehole Environment Agency, South West Region Other Industrial/Commercial/Public Services: General Use (Medium Loss) Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Premises Of Bearnes, Rainbow, Avenue Road, Torquay 01 January 31 December 25th May 1994 Not Supplied Located by supplier to within 100m	A5SW (SE)	1964	2	290100 64700
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Jeally Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Bearnes 14/46/003/0825 100 Bearnes, Borehole Environment Agency, South West Region Public Water Supply: General Use (Low Loss) Water may be abstracted from a single point Groundwater 38 9376 Premises Of Bearnes, Rainbow, Avenue Road, Torquay 01 January 31 December 25th May 1994 Not Supplied Located by supplier to within 10m	A5SW (SE)	1964	2	290100 64700
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	BEARNES 14460030825 Not Supplied Premises Of Bearnes, Rainbow, Avenue Road, TORQUAY Environment Agency, South West Region Private Water Supply (Miscellaneous Water Bottling) Not Supplied Borehole 68.10 24889.00 Depth 63m 00003m0000574g Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A5SW (SE)	1964	2	290105 64705
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	BEARNES 14460030825 Not Supplied Premises Of Bearnes, Rainbow, Avenue Road, TORQUAY Environment Agency, South West Region Private Water Supply (Miscellaneous Water Bottling) Not Supplied Borehole 37.50 9376.00 Horticulture Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A5SW (SE)	1968	2	290105 64700

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions				
	Operator:BEARNESLicence Number:14460030825Permit Version:Not SuppliedLocation:Premises Of Bearnes, Rainbow, Avenue Road, TORQUAYAuthority:Environment Agency, South West RegionAbstraction:Private Water Supply (Miscellaneous Water Bottling)Abstraction Type:Not SuppliedSource:BoreholeDaily Rate (m3):1244.00Details:Not SuppliedAuthorised Start:Not SuppliedAuthorised End:Not SuppliedPermit End Date:Not SuppliedPermit End Date:Not SuppliedPositional Accuracy:Located by supplier to within 100m	A5SW (SE)	1971	2	290105 64695
	Groundwater Vulnerability Soil Classification: Soils of Intermediate Leaching Potential (I1) - Soils which can possibly transmit a wide range of pollutants Map Sheet: Sheet 49 South Devon Scale:	A13NW (N)	0	2	288842 66303
	Drift Deposits				
	None				
	Bedrock Aquifer Designations Aquifer Designation: Secondary Aquifer - A	A13NW (N)	0	1	288842 66303
	Superficial Aquifer Designations Aquifer Designation: Secondary Aquifer - A	A13NW	0	1	288842
		(N)			66303
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13NE (E)	0	2	288875 66310
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13NE (NE)	0	2	288855 66330
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13NW (NW)	62	2	288767 66413
	Extreme Flooding from Rivers or Sea without Defences				
	Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SE (E)	126	2	289040 66265
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13NE (E)	0	2	288875 66310
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13NE (NE)	0	2	288855 66330
	Elooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SE (E)	8	2	288920 66290
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13NW (NW)	62	2	288767 66413
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SE (E)	126	2	289040 66265
	Areas Benefiting from Flood Defences None				

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flood Water Storage Areas				
	None Flood Defences				
	None				
32	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13SE (SE)	0	5	288893 66273
33	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 309.1 Watercourse Length: 0.0 ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NE (E)	11	5	288908 66318
34	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 157.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NE (NE)	11	5	288886 66333
35	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 68.2 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (NW)	37	5	288792 66399
36	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 31.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NE (N)	45	5	288856 66389
37	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 122.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (N)	45	5	288830 66404
38	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 136.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (NW)	94	5	288731 66429
39	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 104.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (NW)	128	5	288723 66463

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
40	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 39.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (NW)	224	5	288634 66519
41	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 25.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (NW)	224	5	288619 66506
42	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.8 Watercourse Level: On ground surface Permanent: True Watercourse Not Supplied Catchment Name: Primacy: 1	A13NW (NW)	249	5	288600 66522
43	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 149.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (NW)	253	5	288596 66525
44	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 127.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A13NW (NW)	274	5	288569 66526
45	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 33.0 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SW (E)	282	5	289192 66228
46	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 136.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SW (E)	314	5	289225 66228
47	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 217.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	371	5	288433 66490
48	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 48.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	391	5	288439 66545

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
49	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	396	5	288462 66588
50	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 47.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	398	5	288466 66596
51	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	398	5	288466 66596
52	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	399	5	288466 66598
53	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	399	5	288470 66603
54	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 210.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	402	5	288481 66620
55	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 34.1 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SW (E)	441	5	289358 66252
56	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.3 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	445	5	288430 66626
57	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 102.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	448	5	288428 66629

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
58	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SW (E)	453	5	289374 66281
59	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 410.2 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SW (E)	472	5	289392 66289
60	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SW (E)	472	5	289392 66289
61	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 231.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (NW)	552	5	288299 66624
62	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 39.1 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	559	5	288315 66663
63	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 37.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	569	5	288329 66699
64	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 146.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	584	5	288339 66735
65	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 58.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	603	5	289524 66324
66	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	603	5	289524 66324

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
67	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 822.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (W)	606	5	288195 66519
68	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 10.3 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	606	5	289525 66338
69	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	606	5	289525 66338
70	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A12NE (W)	613	5	288190 66525
71	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	619	5	289538 66343
72	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 45.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	619	5	289538 66343
73	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 239.1 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	660	5	289580 66337
74	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 67.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	664	5	289583 66351
75	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 24.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	698	5	289579 66539

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
76	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 2	A17SE (NW)	701	5	288264 66827
77	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	701	5	288264 66827
78	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 66.5 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	703	5	289579 66554
79	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 51.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	704	5	289587 66533
80	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	704	5	289587 66533
81	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 193.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	715	5	288256 66837
82	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 253.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (NE)	721	5	289568 66623
83	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 47.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	727	5	289622 66499
84	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 66.3 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	731	5	289650 66351

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
85	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 211.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	731	5	289650 66351
86	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 130.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A18NW (NW)	732	5	288534 67044
87	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 172.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A18NW (NW)	732	5	288535 67045
88	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 65.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	733	5	289646 66415
89	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	748	5	289650 66472
90	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 195.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	753	5	288358 66973
91	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	756	5	289654 66492
92	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 6.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A9NE (SE)	757	5	289573 65920
93	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 216.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	760	5	288251 66896

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
94	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 297.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A9NE (SE)	761	5	289573 65914
95	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 65.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SE (NW)	763	5	288217 66866
96	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 650.3 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14NE (E)	768	5	289662 66508
97	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 57.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A19SW (NE)	798	5	289496 66859
98	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 442.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A19SW (NE)	798	5	289498 66857
99	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	822	5	288168 66900
100	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	822	5	288123 66846
101	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 40.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	823	5	288125 66850
102	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 69.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	824	5	288170 66905

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
103	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.9 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	825	5	288161 66897
104	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	829	5	288151 66891
105	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	829	5	288152 66892
106	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 121.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A9SW (SE)	873	5	289389 65531
107	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 124.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	883	5	288147 66967
108	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 63.7 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A9SW (SE)	889	5	289485 65590
109	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 248.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SE (E)	895	5	289816 66295
110	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 213.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SE (E)	928	5	289849 66288
111	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 150.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A14SE (E)	928	5	289849 66288

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
112	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 108.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (W)	934	5	287891 66646
113	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 328.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	940	5	287974 66838
114	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 42.1 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	952	5	288031 66940
115	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 7.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17SW (NW)	956	5	288055 66975
116	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 0.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17NW (NW)	957	5	288059 66981
117	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 11.6 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17NW (NW)	957	5	288059 66982
118	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 83.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17NW (NW)	963	5	288062 66993
119	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 11.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17NW (NW)	974	5	288125 67071
120	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 16.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 2	A17NW (NW)	984	5	288122 67081

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
121	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17NW (NW)	984	5	288121 67081
122	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17NW (NW)	987	5	288105 67070
123	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 143.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Teign Primacy: 1	A17NW (NW)	993	5	288123 67094

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Historical Landfill S	lites				
124	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	P Bright Newton Road, Torquay, Devon Scotts Bridge Not Supplied As Supplied	A13SE (E)	67	2	288970 66250
	Historical Landfill S	lites				
125	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Kerswell Gardens Newton Abbot, Kingsteignton, Devon Kerswell Gardens Newton Abbot, Kingskerswell, Devon As Supplied	A18SE (N)	328	2	288898 66681
	Historical Landfill S	lites				
126	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	S R Lancaster Barton, Torquay Barton Hall Farm Not Supplied As Supplied	A19SW (NE)	635	2	289423 66695
	Licensed Waste Ma	nagement Facilities (Landfill Boundaries)				
127	Name: Licence Number: Location: Licence Holder: Authority: Site Category: Max Input Rate: Licence Status: Issued: Positional Accuracy: Boundary Accuracy:	Kerswell Gardens 21710 Kingsteignton, Newton Abbot, Devon J Craxford Plant Hire Ltd Environment Agency - South West Region, Devon and Cornwall Area Landfills Taking Non-biodegradeable Wastes (Not Construction) Not Supplied Inactive 25th January 1991 Positioned by the supplier As Supplied	A18SE (N)	328	2	288898 66681
	Licensed Waste Ma	nagement Facilities (Locations)				
128	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	21710 Kingsteignton, Newton Abbot, Devon J Craxford Plant Hire Ltd Not Supplied Environment Agency - South West Region, Devon and Cornwall Area Landfills Taking Non-biodegradeable Wastes (Not Construction) Surrendered 25th January 1991 Not Supplied Not Supplied Not Supplied Not Supplied 15th April 2010 Not Supplied Located by supplier to within 100m	A13NW (N)	235	2	288800 66600

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
129	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	21999 Torquay, Devon Bright P Not Supplied Environment Agency - South West Region, Devon and Cornwall Area Not Supplied Surrendered Sth January 1983 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A14NW (E)	295	2	289200 66400
	Licensed Waste Ma	nagement Facilities (Locations)				
130	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	21586 Unit 11b, Coventry Farm Estate, Newton Road, Torquay, Devon, TQ2 7HX Roland S Robinson, Ian D Robinson & Steven G Robinson Not Supplied Environment Agency - South West Region, Devon and Cornwall Area Household, Commercial And Industrial Transfer Stations Modified 27th October 1992 2nd January 2014 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A18SW (NW)	389	2	288532 66650
	Licensed Waste Ma	nagement Facilities (Locations)				
131		400937 Kerswell Gardens, Newton Road, Torquay, Devon, TQ2 7HX Armabridge Ltd Not Supplied Environment Agency - South West Region, Devon and Cornwall Area Treatment of waste to produce soil <75,000 tpy Issued 22nd July 2014 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A18SW (N)	396	2	288835 66761
132	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 21975 Kingskerswell, Devon, TQ12 4SU Lancaster S R Not Supplied Environment Agency - South West Region, Devon and Cornwall Area Not Supplied Surrendered 10th July 1986 Not Supplied Not Supplied Located by supplier to within 100m	A19SW (NE)	688	2	289400 66800
	Local Authority Lan					
	Name:	Torbay Unitary Council - Had landfill data but passed it to the relevant environment agency		0	4	288842 66303
	Local Authority Lan Name:	dfill Coverage Teignbridge District Council - Has supplied landfill data		174	3	288969 66475
	Local Authority Lan Name:	dfill Coverage Devon County Council - Has supplied landfill data		174	6	288969 66475
133	Potentially Infilled L Use: Date of Mapping:		A14SW (SE)	606	8	289447 66007

soiltechnics environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potentially Infilled L	and (Water)				
134	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1938	A14NE (E)	614	8	289533 66354
	Potentially Infilled L	and (Water)				
135	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1938	A9NE (SE)	866	8	289531 65670
	Registered Landfill	Sites				
136	Licence Holder: Licence Reference: Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status: Dated: Preceded By Licence: Superseded By Licence: Superseded By Licence: Positional Accuracy: Boundary Accuracy: Authorised Waste Prohibited Waste	Scott'S Bridge, Newton Road, Torquay, Devon 289050 66250 Belgravia House, 4 Belgravia Road, Torquay, Devon Environment Agency - South West Region, Devon Area Landfill Small (Equal to or greater than 10,000 and less than 25,000 tonnes per year) No known restriction on source of waste Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled 8th April 1991 L/10/ 43/83 Not Given Manually positioned to the address or location	A13SE (E)	141	2	289050 66250
	Registered Landfill	Sites				
136	Licence Holder: Licence Reference: Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status: Dated: Preceded By Licence: Superseded By Licence:	P Bright L/10/ 43/83 Land Adj. Newton Road, Scotts Bridge, Torquay, Devon 289050 66250 Belgravia House, 4 Belgravia Road, Torquay, Devon Environment Agency - South West Region, Devon Area Landfill Small (Equal to or greater than 10,000 and less than 25,000 tonnes per year) No known restriction on source of waste Record supersededSuperseded 5th January 1983 Not Given Wr/L/Lf/S(30) M03.91 Manually positioned to the address or location	A13SE (E)	141	2	289050 66250

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
137	Registered Landfill Licence Holder: Licence Reference: Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status: Dated: Preceded By Licence: Superseded By Licence: Positional Accuracy: Boundary Accuracy: Authorised Waste	J Craxford (Plant Hire) Ltd WR/L/LF/S(139) Kerswell Gardens, Kingskerswell, Newton Abbot, Devon Not Supplied Not Supplied Foredown, Kingskerswell, NEWTON ABBOT, Devon, TQ12 5LE Environment Agency - South West Region, Devon Area Landfill Very Large (Equal to or greater than 250,000 tonnes per year) No known restriction on source of waste Record supersededSuperseded 25th January 1991 Not Given WR/L/LF/S(139) 05.96 Positioned by the supplier	A18SE (N)	338	2	288902 66691
		Devon Cat.C: Putrescible Waste Liquid/Sludge Wastes Poisonous, Noxious, Polluting Wastes				
138	Registered Landfill Licence Holder: Licence Reference: Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status: Dated: Preceded By Licence: Superseded By Licence: Positional Accuracy: Boundary Accuracy: Authorised Waste	J Craxford (Plant Hire) Ltd WR/L/LF/S(139) 05.96 Kerswell Gardens, Kingskerswell, Newton Abbot, Devon 289000 66800 Foredown, Kingskerswell, NEWTON ABBOT, Devon, TQ12 5LE Environment Agency - South West Region, Devon Area Landfill Very Large (Equal to or greater than 250,000 tonnes per year) No known restriction on source of waste Site not yet started 1st May 1996 WR/L/LF/S(139) Not Given Manually positioned to the address or location	A18SE (N)	475	2	289000 66800
139	Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status: Dated: Preceded By Licence: Superseded By Licence:	S R Lancaster Lf/S(102) (L/10/ 92/86) Barton Hall Farm, Torquay, Devon 289450 66850 Dunterton, Teignharvey, Newton Abbot, Devon Environment Agency - South West Region, Devon Area Landfill Small (Equal to or greater than 10,000 and less than 25,000 tonnes per year) No known restriction on source of waste Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled 10th July 1986 Not Given Not Given Manually positioned to the address or location	A19SW (NE)	759	2	289450 66850

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Registered Waste T	ransfer Sites				
140	Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence:	R S & I D Robinson & S G Robinson WR/L/TR/S(165) 09.96 A.B.C.Siddalls, 11B Coventry Farm Estate, TORQUAY, Devon, TQ2 7HX As Site Address Environment Agency - South West Region, Devon Area Transfer Very Small (Less than 10,000 tonnes per year) No known restriction on source of waste Operational as far as is knownOperational 27th October 1992 Not Given Not Given Positioned by the supplier Moderate Devon Cat.A: Inert Waste Devon Cat.A: Inert Waste Devon Cat.C: Putrescible Waste Max.Waste Permitted By Licence Waste N.O.S.	A18SW (NW)	420	2	288530 66687
	Registered Waste T	ransfer Sites				
141	Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence:	South Devon Health Care WR/L/TC/S(140)A 07.93 Torbay Hospital, Lawes Bridge, TORQUAY, Devon, TQ2 7AA As Site Address Environment Agency - South West Region, Devon Area Transfer Very Small (Less than 10,000 tonnes per year) No known restriction on source of waste Licence has completion certificateSurrendered 1st July 1993 Not Given Not Given Approximate location provided by supplier Not Supplied Clinical Wastes A -> E In Hsc Rev'92 Confidential Waste Paper From Med.Est Max.Storage In Licence Paper/Card. Assoc.With Clinical Waste Pharmaceuticals/Controlled Drugs Plastic Waste Assoc.With Clinical Wast	A9NE (SE)	969	2	289800 65900

environmental and geotechnical consultants

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Soli	d Geology				
	Description:	Permian Rocks (Undifferentiated)	A13NW (N)	0	1	288842 66303
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A13SW (SW)	0	1	288840 66300
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NW (N)	0	1	288842 66303
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:					
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil Source:	-	A13NE	44	1	288849
	Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	(N)	44	I	66396
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <100 ma/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	•				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A13NE (NE)	51	1	288884 66377
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A13NW (N)	234	1	288786 66599
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <100 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Recorded Mine					
142	Site Name: Location: Source: Reference:	Courtlands Edginswell, Torquay, Devon British Geological Survey, National Geoscience Information Service 45456	A13SE (SE)	236	1	289027 66055
	Type: Status: Operator:	Opencast Ceased Not Supplied				
	Operator Location: Periodic Type: Geology:	Not Supplied Permian Torbay Breccia Formation				
	Commodity:	Sandstone Located by supplier to within 10m				

environmental and geotechnical consultants

Geological

Map ID	Details	Re (C	uadrant eference ompass irection)	Estimated Distance From Site	Contact	NGR
143	BGS Recorded Mineral Sites Site Name: Longpark China Terra Cotta Works Location: Shiphay, Torquay, Devon Source: British Geological Survey, National Geoscience Info Reference: 45457 Type: Opencast Status: Ceased		A14SE (E)	918	1	289837 66245
	Operator: Not Supplied Operator Location: Not Supplied Periodic Type: Permian Geology: Watcombe Breccia Formation Commodity: Common Clay and Shale Positional Accuracy: Located by supplier to within 10m					
	BGS Measured Urban Soil Chemistry No data available					
	BGS Urban Soil Chemistry Averages No data available					
	Coal Mining Affected Areas In an area that might not be affected by coal mining					
	Non Coal Mining Areas of Great Britain Risk: Rare Source: British Geological Survey, National Geoscience Info		A13NE (NE)	242	1	289008 66531
	Potential for Collapsible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Info		A13SW (SW)	0	1	288840 66300
	Potential for Collapsible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Info		A13NW (N)	0	1	288842 66303
	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Info		A13SW (SW)	0	1	288840 66300
	Potential for Compressible Ground Stability Hazards Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Info		A13NW (N)	0	1	288842 66303
	Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Info		A13NW (N)	0	1	288842 66303
	Potential for Ground Dissolution Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Info		A13NE (NE)	242	1	289008 66531
	Potential for Landslide Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Info		A13NW (SW)	0	1	288842 66302
	Potential for Landslide Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Info		A13NW (N)	0	1	288842 66303
	Potential for Landslide Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Info		A13NE (NE)	30	1	288889 66357
	Potential for Landslide Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Info		A13SE (SE)	45	1	288931 66239
	Potential for Landslide Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Info		A13NW (NW)	135	1	288732 66478
	Potential for Landslide Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Info		A13NW (NW)	191	1	288683 66513
	Potential for Landslide Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Info		A13NW (N)	214	1	288771 66576
	Potential for Running Sand Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Info		A13NW (N)	0	1	288842 66303

environmental and geotechnical consultants

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	288840 66300
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (N)	44	1	288849 66396
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	288840 66300
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (N)	0	1	288842 66303
	Radon Potential - R	adon Affected Areas				
	Affected Area:	The property is in an Intermediate probability radon area (1 to 3% of homes are estimated to be at or above the Action Level).	A13NW (N)	0	1	288842 66303
	Source:	British Geological Survey, National Geoscience Information Service				
	Radon Potential - R	adon Protection Measures				
		No radon protective measures are necessary in the construction of new dwellings or extensions	A13NW (N)	0	1	288842 66303
	Source:	British Geological Survey, National Geoscience Information Service				

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
144	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries D G M Newton Road, Torquay, TQ2 7HX Lawnmowers & Garden Machinery - Sales & Service Active Automatically positioned to the address	A13NW (N)	188	-	288797 66553
145	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Chelston Lawnmower Services Edginswell Farm, Edginswell Lane, Torquay, TQ2 7JF Lawnmowers & Garden Machinery - Sales & Service Inactive Automatically positioned to the address	A13SW (SW)	194	-	288734 66083
146	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries P R Sport & Leisure Trenton, Edginswell Close, Torquay, TQ2 7JA Sports Equipment Manufacturers & Distributors Inactive Automatically positioned to the address	A13SE (SE)	202	-	289086 66190
147	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Terry Sanders & Son Ltd Edginswell Hall, Edginswell Lane, Torquay, Devon, TQ2 7JF Recycling Centres Inactive Automatically positioned to the address	A13SW (SW)	230	-	288586 66158
148	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Wheelie Bin 7, Walkham Rise, Torquay, TQ2 7RN Wheelie Bin Cleaning Inactive Automatically positioned to the address	A13SW (S)	291	-	288754 65970
149	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Restore & More S W 49, Higher Cadewell Lane, Torquay, TQ2 7EX Carpet, Curtain & Upholstery Cleaners Active Automatically positioned to the address	A14SW (SE)	409	-	289208 65998
150	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries B & D Restorers Unit 5a, Coventry Farm, Newton Road, Torquay, TQ2 7HX Furniture - Repairing & Restoring Inactive Automatically positioned to the address	A17SE (NW)	447	-	288510 66705
150	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Gates & Fences Uk Ltd Newton rd, Torquay, Devon, TQ2 7HX Gate Manufacturers Active Manually positioned within the geographical locality	A17SE (NW)	460	-	288499 66714
150	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries 21st Century Screen Printers Unit 5, Coventry Farm, Newton Road, Torquay, TQ2 7HX Screen Process Printers Active Automatically positioned to the address	A17SE (NW)	460	-	288499 66714
151	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Best Cleaning & Ironing Services 41, Collaton Road, Torquay, TQ2 7HH Cleaning Services - Domestic Active Automatically positioned to the address	A8NE (SE)	481	-	289140 65835
152	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries D J Blinds 3, Lowley Brook Court, Torquay, TQ2 7RS Blinds, Awnings & Canopies Inactive Automatically positioned to the address	A8NW (S)	494	-	288796 65750
152	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Dave Musgrove 3, Lowley Brook Court, Torquay, TQ2 7RS Blinds, Awnings & Canopies Inactive Automatically positioned to the address	A8NW (S)	494	-	288796 65750

environmental and geotechnical consultants

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
153	Contemporary Trade Directory Entries Name: Tint Works Location: Unit 2, Coventry Farm, Newton Road, Torqua Classification: Window Tinting Status: Inactive Positional Accuracy: Automatically positioned to the address	y, Devon, TQ2 7HX	A17SE (NW)	499	-	288473 66743
153	Contemporary Trade Directory Entries Name: Euro Candles Location: Unit 1, Coventry Farm, Newton Road, Torqua Classification: Candle Manufacturers & Suppliers Status: Inactive Positional Accuracy: Automatically positioned to the address	y, TQ2 7HX	A17SE (NW)	511	-	288457 66746
153	Contemporary Trade Directory Entries Name: The Tint Worx Location: Unit 2, Coventry Farm, Newton Road, Torqua Classification: Window Tinting Status: Inactive Positional Accuracy: Automatically positioned to the address	y, TQ2 7HX	A17SE (NW)	511	-	288457 66746
153	Contemporary Trade Directory Entries Name: T Q 3 Motors Location: Unit 2, Coventry Farm, Newton Road, Torqua Classification: Garage Services Status: Inactive Positional Accuracy: Automatically positioned to the address	y, TQ2 7HX	A17SE (NW)	511	-	288457 66746
153	Contemporary Trade Directory Entries Name: Taylor Made Gates Location: Unit 8, Coventry Farm, Newton Road, Torqua Classification: Wrought Ironwork Status: Inactive Positional Accuracy: Automatically positioned to the address	y, TQ2 7HX	A17SE (NW)	514	-	288462 66754
153	Contemporary Trade Directory Entries Name: Coastal Gates & Security Ltd Location: Unit 8, Coventry Farm, Newton Road, Torqua Classification: Gate Manufacturers - Automated Status: Inactive Positional Accuracy: Automatically positioned to the address	y, Devon, TQ2 7HX	A17SE (NW)	514	-	288462 66754
153	Contemporary Trade Directory Entries Name: R J S Electrical Location: Unit 8a, Coventry Farm, Newton Road, Torque Classification: Electrical Engineers Status: Inactive Positional Accuracy: Automatically positioned to the address	ay, Devon, TQ2 7HX	A17SE (NW)	514	-	288462 66754
153	Contemporary Trade Directory Entries Name: Elite Vehicle Solutions Location: Unit 1, Coventry Farm Estate, Newton Road, Classification: Car Dealers - Used Status: Active Positional Accuracy: Automatically positioned to the address	TORQUAY, TQ2 7HX	A17SE (NW)	521	-	288466 66766
153	Contemporary Trade Directory Entries Name: A B C Siddalls Skip Hire Location: Unit 11b, Coventry Farm, Newton Road, Toro Classification: Waste Disposal Services Status: Inactive Positional Accuracy: Automatically positioned to the address	uay, TQ2 7HX	A17SE (NW)	521	-	288466 66766
153	Contemporary Trade Directory Entries Name: M A Contracts Location: Unit 10, Coventry Farm, Newton Road, Torque Classification: Commercial Cleaning Services Status: Inactive Positional Accuracy: Automatically positioned to the address	ay, TQ2 7HX	A17SE (NW)	522	-	288466 66766
154	Contemporary Trade Directory Entries Name: Fast Trax Location: Homepark, Edginswell Lane, Torquay, TQ2 7 Classification: Breakdown and Recovery Status: Active Positional Accuracy: Automatically positioned to the address	JF	A12NE (W)	510	-	288269 66406
155	Contemporary Trade Directory Entries Name: A J Autos Location: Edginswell Lane, Torquay, TQ2 7JF Classification: Garage Services Status: Inactive Positional Accuracy: Automatically positioned to the address		A12NE (W)	566	-	288235 66514

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
156	Contemporary Trade Directory Entries Name: First Impressions Printers Location: Higher Cadewell La, Torquay, Devon, TQ2 7ET Classification: Printers Status: Inactive Positional Accuracy: Manually positioned within the geographical locality	A9NW (SE)	579	-	289349 65902
157	Contemporary Trade Directory Entries Name: Paramount Cleaning Specialists Location: 2, Culm Close, Torquay, TQ2 7RQ Classification: Carpet, Curtain & Upholstery Cleaners Status: Inactive Positional Accuracy: Automatically positioned to the address	A8SW (S)	648	-	288834 65590
158	Contemporary Trade Directory Entries Name: 1st Impressions Printing Location: 7, Higher Cadewell Lane, Torquay, TQ2 7ET Classification: Printers Status: Active Positional Accuracy: Automatically positioned to the address	A9NW (SE)	658	-	289411 65854
159	Contemporary Trade Directory Entries Name: Esso Location: Kingskerswell, Newton Abbot, Devon, TQ12 5HG Classification: Petrol Filling Stations Status: Active Positional Accuracy: Manually positioned to the address or location	A17SE (NW)	690	-	288320 66865
159	Contemporary Trade Directory Entries Name: Shell (Uk) Ltd Location: Torquay Road, Kingskerswell, Newton Abbot, Devon, TQ12 5HG Classification: Petrol Filling Stations - 24 Hour Status: Inactive Positional Accuracy: Automatically positioned to the address	A17SE (NW)	690	-	288320 66865
159	Contemporary Trade Directory Entries Name: Texaco Location: Torquay Road, Kingskerswell, Newton Abbot, Devon, TQ12 5HG Classification: Petrol Filling Stations Status: Inactive Positional Accuracy: Automatically positioned to the address	A17SE (NW)	690	-	288320 66865
159	Contemporary Trade Directory Entries Name: Bob Hill Location: 19, Stadium Drive, Kingskerswell, Newton Abbot, Devon, TQ12 5HP Classification: Road Haulage Services Status: Inactive Positional Accuracy: Automatically positioned to the address	A17SE (NW)	718	-	288288 66874
160	Contemporary Trade Directory Entries Name: Bin Cleaning Ltd Location: 11, Cadewell Lane, Torquay, TQ2 7AG Classification: Wheelie Bin Cleaning Status: Inactive Positional Accuracy: Automatically positioned to the address	A14SE (E)	745	-	289629 66073
161	Contemporary Trade Directory Entries Name: Country Kitchen Shiphay Location: 38, Banbury Park, Torquay, TQ2 7HN Classification: Confectionery Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address	A9NW (SE)	752	-	289326 65634
162	Contemporary Trade Directory Entries Name: Professional Cleaning Services Location: 87, Torridge Avenue, Torquay, TQ2 7NB Classification: Cleaning Services - Domestic Status: Active Positional Accuracy: Automatically positioned to the address	A8SW (S)	758	-	288805 65482
163	Contemporary Trade Directory Entries Name: Electro Location: 11, Banbury Park, Torquay, TQ2 7HN Classification: Washing Machines - Servicing & Repairs Status: Active Positional Accuracy: Automatically positioned to the address	A9SW (SE)	802	-	289343 65584
164	Contemporary Trade Directory Entries Name: Torbay Harbour Services Location: 1, Kittiwake Drive, Torquay, TQ2 7TR Classification: Cleaning Services - Domestic Status: Inactive Positional Accuracy: Automatically positioned to the address	A19SW (NE)	815	-	289456 66921

environmental and geotechnical consultants

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
165	Contemporary Trade Directory Entries Name: Comet Location: Nicholson Road, Torquay, TQ2 7HT Classification: Electrical Goods Sales, Manufacturers & Wholesaler Status: Inactive Positional Accuracy: Automatically positioned to the address	5	A19SE (E)	822	-	289672 66640
166	Contemporary Trade Directory Entries Name: Caravan Searcher Location: 1, Condor Drive, Torquay, TQ2 7TU Classification: Caravan Dealers & Manufacturers Status: Inactive Positional Accuracy: Automatically positioned to the address		A19SE (NE)	842	-	289553 66862
167	Contemporary Trade Directory Entries Name: C & M Services Location: 18, Roundmoors Close, Kingskerswell, Newton Abbo Classification: Commercial Cleaning Services Status: Inactive Positional Accuracy: Automatically positioned to the address	t, Devon, TQ12 5HR	A17NE (NW)	854	-	288264 67030
167	Contemporary Trade Directory Entries Name: Jeffs Cleaning Services Location: 18, Roundmoors Close, Kingskerswell, Newton Abbo Classification: Commercial Cleaning Services Status: Inactive Positional Accuracy: Automatically positioned to the address	t, Devon, TQ12 5HR	A17NE (NW)	854	-	288264 67030
168	Contemporary Trade Directory Entries Name: Heat Recovery Ltd Location: 35, Kittiwake Drive, Torquay, TQ2 7TR Classification: Heating Services - Industrial and Commercial Status: Active Positional Accuracy: Automatically positioned to the address		A19NW (NE)	874	-	289428 67017
169	Contemporary Trade Directory Entries Name: Neptune Trailers Location: 15, Stanbury Road, Torquay, TQ2 7LL Classification: Trailers & Towing Equipment Status: Inactive Positional Accuracy: Automatically positioned to the address		A9SW (SE)	898	-	289270 65429
170	Contemporary Trade Directory Entries Name: I J & C M Tuckett Location: 33, Fluder Hill, Kingskerswell, Newton Abbot, Devon, Classification: Dairies Status: Inactive Positional Accuracy: Automatically positioned to the address	TQ12 4SX	A18NE (N)	902	-	288921 67260
171	Contemporary Trade Directory Entries Name: Daily Poppins Location: 6, Roundmoors Close, Kingskerswell, Newton Abbot, Classification: Classification: Cleaning Services - Domestic Status: Inactive Positional Accuracy: Automatically positioned to the address	Devon, TQ12 5HR	A17NE (NW)	909	-	288175 67029
172	Contemporary Trade Directory Entries Name: 24 7 Plumbing Services Location: 91, Marldon Road, Torquay, TQ2 7EG Classification: Boilers - Servicing, Replacements & Repairs Status: Active Positional Accuracy: Automatically positioned to the address		A3NE (S)	951	-	288867 65286
173	Contemporary Trade Directory Entries Name: Comet Group Plc Location: The Willows, Nicholson Road, Torquay, TQ2 7XA Classification: Electrical Goods Sales, Manufacturers & Wholesaler Status: Inactive Positional Accuracy: Automatically positioned to the address	S	A19SE (E)	955	-	289805 66668
174	Contemporary Trade Directory Entries Name: Yeomans - Torquay Location: 151, Newton Road, TORQUAY, TQ2 7AJ Classification: Car Dealers Status: Active Positional Accuracy: Automatically positioned to the address		A15SW (E)	965	-	289876 66169
174	Contemporary Trade Directory Entries Name: Empire Motors Of Torquay Location: Longpark, Newton Road, Torquay, TQ2 7AL Classification: Garage Services Status: Inactive Positional Accuracy: Automatically positioned to the address		A15SW (E)	974	-	289890 66214

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
175	Name: Location: Classification: Status: Positional Accuracy:	The Elite Service 17, Manor Gardens, Kingskerswell, Newton Abbot, Devon, TQ12 5HF Commercial Cleaning Services Inactive Automatically positioned to the address	A17NE (NW)	971	-	288188 67119
	Contemporary Trad	e Directory Entries				
176	Name: Location: Classification: Status: Positional Accuracy:	Newton Road Mot Centre 126, Newton Road, Torquay, TQ2 7AD Mot Testing Centres Active Automatically positioned to the address	A15SW (E)	980	-	289876 66087
	Contemporary Trad	e Directory Entries				
176	Name: Location: Classification: Status: Positional Accuracy:	Nick Palmer Cars 126, Newton Road, Torquay, TQ2 7AD Car Dealers - Used Active Automatically positioned to the address	A15SW (E)	980	-	289876 66087
	Contemporary Trad	e Directory Entries				
176	Name: Location: Classification: Status: Positional Accuracy:	David Meek 126, Newton Road, Torquay, TQ2 7AD Car Dealers Inactive Automatically positioned to the address	A15SW (E)	980	-	289876 66087
	Contemporary Trad	e Directory Entries				
176	Name: Location: Classification: Status: Positional Accuracy:	Torquay Car Centre 126, Newton Road, Torquay, TQ2 7AD Car Dealers Inactive Automatically positioned to the address	A15SW (E)	980	-	289876 66087
	Contemporary Trad					
177	Name: Location: Classification: Status:	Boilerworx 62, Marldon Road, Torquay, TQ2 7EH Boilers - Servicing, Replacements & Repairs Inactive Automatically positioned to the address	A3NE (S)	991	-	288970 65250
	Contemporary Trad					
177	Name: Location: Classification: Status:	Lewis Tuning & Servicing 62, Marldon Road, Torquay, TQ2 7EH Garage Services Inactive Automatically positioned to the address	A3NE (S)	991	-	288970 65250
	Fuel Station Entries	3				
178	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Mrh Kingskerswell Torquay Road, Kingskerswell, Newton Abbot, Devon, TQ12 5HG Esso Petrol Station Open Manually positioned to the address or location	A17SE (NW)	690	-	288320 66865
	Fuel Station Entries	3				
179	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Sainsburys Torquay Nicholson Road, Torquay, Devon, TQ2 7HT Sainsburys Hypermarket Open Manually positioned to the address or location	A14NE (E)	750	-	289631 66548
	Points of Interest -	Commercial Services				
180	Name: Location: Category: Class Code: Positional Accuracy:	Taylor Made Gates Unit 8 Coventry Farm, Newton Road, Torquay, TQ2 7HX Construction Services Metalworkers Including Blacksmiths Positioned to address or location	A17SE (NW)	514	7	288462 66754
	Points of Interest -	Commercial Services				
180	Name: Location: Category: Class Code: Positional Accuracy:	Taylor Made Gates Unit 8 Coventry Farm, Newton Road, Torquay, TQ2 7HX Construction Services Metalworkers Including Blacksmiths Positioned to address or location	A17SE (NW)	514	7	288462 66754

soiltechnics environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
180	Points of Interest - Commercial Services Name: U K S C Valeting & Detailing Location: Unit 1 Coventry Farm Estate, Newton Road, Torquay, TQ2 7HX Category: Personal, Consumer and other Services Class Code: Vehicle Cleaning Services Positional Accuracy: Positioned to address or location	A17SE (NW)	521	7	288466 66765
181	Points of Interest - Commercial Services Name: A J Autos Location: Edginswell Lane, Torquay, TQ2 7JF Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A12NE (W)	566	7	288235 66514
182	Points of Interest - Commercial Services Name: Bob Hill Location: 19 Stadium Drive, Kingskerswell, Newton Abbot, TQ12 5HP Category: Transport, Storage and Delivery Class Code: Distribution and Haulage Positional Accuracy: Positioned to address or location	A17SE (NW)	718	7	288288 66874
183	Points of Interest - Commercial Services Name: Sainsburys Torquay Location: Nicholson Road, Torquay, TQ2 7HT Category: Personal, Consumer and other Services Class Code: Vehicle Cleaning Services Positional Accuracy: Positioned to address or location	A14NE (E)	733	7	289614 66545
183	Points of Interest - Commercial Services Name: Car Wash Location: Nicholson Road, Torquay, Devon, TQ2 7HT Category: Personal, Consumer and other Services Class Code: Vehicle Cleaning Services Positional Accuracy: Positioned to address or location	A14NE (E)	735	7	289615 66546
184	Points of Interest - Commercial Services Name: P Barnes-Jones Haulage Location: Rosehill Farm, Fluder Hill, Kingskerswell, Newton Abbot, TQ12 4SX Category: Transport, Storage and Delivery Class Code: Distribution and Haulage Positional Accuracy: Positioned to address or location	A18NE (N)	902	7	288921 67260
185	Points of Interest - Commercial Services Name: Newton Raod MOT Centre Location: 126 Newton Road, Torquay, TQ2 7AD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A15SW (E)	980	7	289876 66087
186	Points of Interest - Commercial Services Name: Lewis Tuning & Servicing Location: 62 Marldon Road, Torquay, TQ2 7EH Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A3NE (S)	991	7	288970 65250
186	Points of Interest - Commercial Services Name: Lewis Tuning & Servicing Location: 62 Marldon Road, Torquay, TQ2 7EH Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A3NE (S)	991	7	288970 65250
187	Points of Interest - Education and Health Name: Torbay Hospital Location: Torbay Hospital, Newton Road, Torquay, TQ2 7AA Category: Health Practitioners and Establishments Class Code: Accident & Emergency Department Positional Accuracy: Positioned to address or location	A9NE (SE)	945	7	289771 65894
188	Points of Interest - Manufacturing and Production Name: Stoneco Ltd Location: Edginswell Lane, Torquay, TQ2 7JF Category: Extractive Industries Class Code: Stone Quarrying and Preparation Positional Accuracy: Positioned to address or location	A13SW (SW)	156	7	288717 66143
189	Points of Interest - Manufacturing and Production Name: Coventry Farm Estate (Industrial) Location: TQ2 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A18SW (NW)	481	7	288525 66757

soiltechnics environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
190	Points of Interest - Manufacturing and Production Name: Tank Location: TQ2 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A9NE (SE)	863	7	289635 65821
190	Points of Interest - Manufacturing and Production Name: Tank Location: TQ2 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A9NE (SE)	866	7	289607 65773
191	Points of Interest - Public Infrastructure Name: Terry Sanders & Son Ltd Location: Edginswell Hall, Edginswell Lane, Torquay, TQ2 7JF Category: Infrastructure and Facilities Class Code: Recycling Centres Positional Accuracy: Positioned to address or location	A13SW (SW)	230	7	288586 66158
191	Points of Interest - Public Infrastructure Name: Terry Sanders & Son Ltd Location: Edginswell Hall, Edginswell Lane, Torquay, TQ2 7JF Category: Infrastructure and Facilities Class Code: Recycling Centres Positional Accuracy: Positioned to address or location	A13SW (SW)	230	7	288586 66158
192	Points of Interest - Public Infrastructure Name: Esso Location: Torquay Road, Kingskerswell, Newton Abbot, TQ12 5HG Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A17SE (NW)	690	7	288320 66865
192	Points of Interest - Public Infrastructure Name: Texaco Location: Torquay Road, Kingskerswell, Newton Abbot, TQ12 5HG Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A17SE (NW)	690	7	288319 66864
192	Points of Interest - Public Infrastructure Name: Pace Kingskerswell Sstn Location: Torquay Road, Kingskerswell, Newton Abbot, TQ12 5HG Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A17SE (NW)	690	7	288320 66865
192	Points of Interest - Public Infrastructure Name: MRH Kingskerswell Location: Torquay Road, Kingskerswell, Newton Abbot, Devon, TQ12 5HG Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A17SE (NW)	690	7	288320 66865
193	Points of Interest - Public Infrastructure Name: Sainsbury's Torquay Location: Nicholson Road, Torquay, TQ2 7HT Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A14NE (E)	750	7	289631 66548
194	Points of Interest - Recreational and Environmental Name: Playground Location: Huntacott Way, TQ2 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A13SW (S)	246	7	288809 66000
194	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A13SW (S)	250	7	288809 65996
195	Points of Interest - Recreational and Environmental Name: Play Area Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8NW (S)	408	7	288812 65834

environmental and geotechnical consultants

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR	
196	Points of Interest - Recreational and Environmental Name: Play Area Location: Exe Hill, TQ2 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A8SW (S)	725	7	288650 65548	
196	Points of Interest - Recreational and Environmental Name: Play Area Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8SW (S)	727	7	288650 65546	
197	Points of Interest - Recreational and Environmental Name: Play Area Location: Condor Drive, TQ2 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A19SE (NE)	811	7	289552 66815	
198	Points of Interest - Recreational and Environmental Name: Play Area Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	821	7	289513 65718	
198	Points of Interest - Recreational and Environmental Name: Play Area Location: Oak Park Avenue, TQ2 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	821	7	289513 65718	
199	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	826	7	288960 65415	
199	Points of Interest - Recreational and Environmental Name: Playground Location: Tamar Avenue, TQ2 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	826	7	288960 65415	
200	Points of Interest - Recreational and Environmental Name: Play Area Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A19NW (NE)	872	7	289293 67094	
200	Points of Interest - Recreational and Environmental Name: Play Area Location: Kingskerswell Road, TQ2 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A19NW (NE)	879	7	289284 67106	
201	Points of Interest - Recreational and Environmental Name: Play Area Location: Condor Drive, TQ2 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A19SE (NE)	925	7	289584 66951	
201	Points of Interest - Recreational and Environmental Name: Play Area Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A19SE (NE)	927	7	289586 66952	
201	Points of Interest - Recreational and Environmental Name: Play Area Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A19NE (NE)	937	7	289565 66986	

environmental and geotechnical consultants

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Gas Pipelines					
202	Name: Nat Grid: Diameter (mm): Building Proximity Distance (m):	FM20 - Kenn (South) to Fishacre Owned By National Grid 600 49	A18SW (NW)	347	8	288655 66686
	Status: Pipe Length (m): Pipe Number:	Active 31797.4 Feeder 20				

environmental and geotechnical consultants

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Torbay Council - Environmental Services	April 2014	Annual Rolling Update
South Hams District Council - Environmental Health Department	January 2013	Annual Rolling Update
Teignbridge District Council - Environmental Health Department	June 2014	Annual Rolling Update
Discharge Consents		
Environment Agency - South West Region	October 2017	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - South West Region	March 2013	As notified
Integrated Pollution Controls		
Environment Agency - South West Region	October 2008	Not Applicable
Integrated Pollution Prevention And Control		
Environment Agency - South West Region	October 2017	Quarterly
Local Authority Integrated Pollution Prevention And Control		
South Hams District Council - Environmental Health Department	February 2013	Annual Rolling Update
Teignbridge District Council - Environmental Health Department	June 2014	Annual Rolling Update
Torbay Council - Environmental Services	May 2016	Annual Rolling Update
Local Authority Pollution Prevention and Controls		
Teignbridge District Council - Environmental Health Department	June 2014	Annual Rolling Update
Torbay Council - Environmental Services	May 2016	Annual Rolling Update
South Hams District Council - Environmental Health Department	October 2014	Annual Rolling Update
Local Authority Pollution Prevention and Control Enforcements		
South Hams District Council - Environmental Health Department	February 2013	Annual Rolling Update
Teignbridge District Council - Environmental Health Department	June 2014	Annual Rolling Update
Torbay Council - Environmental Services	May 2016	Annual Rolling Update
Nearest Surface Water Feature		
Ordnance Survey	September 2017	
Pollution Incidents to Controlled Waters		
Environment Agency - South West Region	September 1999	Not Applicable
Prosecutions Relating to Authorised Processes	N. 1 0040	
Environment Agency - South West Region	March 2013	As notified
Prosecutions Relating to Controlled Waters		
Environment Agency - South West Region	March 2013	As notified
Registered Radioactive Substances		
Environment Agency - South West Region	January 2015	
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Environment Agency - Head Office	July 2012	Annually
River Quality Chemistry Sampling Points		
Environment Agency - Head Office	July 2012	Annually
Substantiated Pollution Incident Register		
Environment Agency - South West Region - Devon Area	October 2017	Quarterly
Environment Agency - South West Region - Devon and Cornwall Area	October 2017	Quarterly
Water Abstractions		
Environment Agency - South West Region	October 2017	Quarterly
Water Industry Act Referrals		
Environment Agency - South West Region	October 2017	Quarterly
Groundwater Vulnerability		
Environment Agency - Head Office	April 2015	Not Applicable
	7,piii 2010	
Drift Deposits Environment Agency - Head Office	January 1000	Not Applicable
	January 1999	Not Applicable

environmental and geotechnical consultants

Agency & Hydrological	Version	Update Cycle
Bedrock Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
Superficial Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
Source Protection Zones		
Environment Agency - Head Office	October 2017	Quarterly
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	November 2017	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	November 2017	Quarterly
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	November 2017	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	November 2017	Quarterly
Flood Defences		
Environment Agency - Head Office	November 2017	Quarterly
OS Water Network Lines		
Ordnance Survey	October 2017	6 Weekly
Surface Water 1 in 30 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 100 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 1000 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water Suitability		
Environment Agency - Head Office	October 2013	As notified
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	Annually

environmental and geotechnical consultants

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	June 1996	Not Applicable
Historical Landfill Sites		
Environment Agency - Head Office	October 2017	Quarterly
Integrated Pollution Control Registered Waste Sites		
Environment Agency - South West Region	October 2008	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - South West Region - Devon Area	October 2017	Quarterly
Environment Agency - South West Region - Devon and Cornwall Area	October 2017	Quarterly
Licensed Waste Management Facilities (Locations)		
Environment Agency - South West Region - Devon Area	October 2017	Quarterly
Environment Agency - South West Region - Devon and Cornwall Area	October 2017	Quarterly
Local Authority Landfill Coverage		
Devon County Council	May 2000	Not Applicable
South Hams District Council - Environmental Health Department	May 2000	Not Applicable
Teignbridge District Council - Environmental Health Department	May 2000	Not Applicable
Torbay Council - Environmental Services	May 2000	Not Applicable
Local Authority Recorded Landfill Sites		
Devon County Council	May 2000	Not Applicable
South Hams District Council - Environmental Health Department	May 2000	Not Applicable
Teignbridge District Council - Environmental Health Department	May 2000	Not Applicable
Torbay Council - Environmental Services	May 2000	Not Applicable
Potentially Infilled Land (Non-Water)		
Landmark Information Group Limited	December 1999	Not Applicable
Potentially Infilled Land (Water)		
Landmark Information Group Limited	December 1999	Not Applicable
Registered Landfill Sites		
Environment Agency - South West Region - Devon Area	March 2003	Not Applicable
Environment Agency - South West Region - Devon and Cornwall Area	March 2003	Not Applicable
Registered Waste Transfer Sites		
Environment Agency - South West Region - Devon Area	March 2003	Not Applicable
Environment Agency - South West Region - Devon and Cornwall Area	March 2003	Not Applicable
Registered Waste Treatment or Disposal Sites		
Environment Agency - South West Region - Devon Area	March 2003	Not Applicable
Environment Agency - South West Region - Devon and Cornwall Area	March 2003	Not Applicable

environmental and geotechnical consultants

Hazardous Substances	Version	Update Cycle	
Control of Major Accident Hazards Sites (COMAH)			
Health and Safety Executive	September 2017	Bi-Annually	
Explosive Sites			
Health and Safety Executive	March 2017	Bi-Annually	
Notification of Installations Handling Hazardous Substances (NIHHS)			
Health and Safety Executive	November 2000	Not Applicable	
Planning Hazardous Substance Enforcements			
South Hams District Council - Planning Department	February 2016	Annual Rolling Update	
Teignbridge District Council	February 2016	Annual Rolling Update	
Torbay Council	February 2016	Annual Rolling Update	
Devon County Council	September 2008	Annual Rolling Update	
Planning Hazardous Substance Consents			
South Hams District Council - Planning Department	February 2016	Annual Rolling Update	
Teignbridge District Council	February 2016	Annual Rolling Update	
Torbay Council	February 2016	Annual Rolling Update	
Devon County Council	September 2008	Annual Rolling Update	
Geological	Version	Update Cycle	
BGS 1:625,000 Solid Geology			
British Geological Survey - National Geoscience Information Service	January 2009	Not Applicable	
BGS Estimated Soil Chemistry			
British Geological Survey - National Geoscience Information Service	October 2015	As notified	
BGS Recorded Mineral Sites			
British Geological Survey - National Geoscience Information Service	November 2017	Bi-Annually	
CBSCB Compensation District			
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	Not Applicable	
Coal Mining Affected Areas			
The Coal Authority - Property Searches	March 2014	As notified	
Mining Instability			
Ove Arup & Partners	October 2000	Not Applicable	
Non Coal Mining Areas of Great Britain			
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable	
Potential for Collapsible Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	June 2015	Annually	
Potential for Compressible Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	June 2015	Annually	
Potential for Ground Dissolution Stability Hazards			
British Geological Survey - National Geoscience Information Service	June 2015	Annually	
Potential for Landslide Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	June 2015	Annually	
Potential for Running Sand Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	June 2015	Annually	
Potential for Shrinking or Swelling Clay Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	June 2015	Annually	
Radon Potential - Radon Affected Areas	July 2011	As notified	
British Geological Survey - National Geoscience Information Service	July 2011	AS HOUIIIEU	
Radon Potential - Radon Protection Measures	hube 0014		
British Geological Survey - National Geoscience Information Service	July 2011	As notified	

environmental and geotechnical consultants

Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	September 2017	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	November 2017	Quarterly
Gas Pipelines National Grid	July 2014	Quarterly
Points of Interest - Commercial Services PointX	September 2017	Quarterly
Points of Interest - Education and Health PointX	September 2017	Quarterly
Points of Interest - Manufacturing and Production PointX	September 2017	Quarterly
Points of Interest - Public Infrastructure PointX	September 2017	Quarterly
Points of Interest - Recreational and Environmental PointX	September 2017	Quarterly
Underground Electrical Cables National Grid	December 2015	Bi-Annually
Sensitive Land Use	Version	Update Cycle
Ancient Woodland		
Natural England	October 2017	Bi-Annually
Areas of Outstanding Natural Beauty Natural England	August 2017	Bi-Annually
Environmentally Sensitive Areas		
Natural England	January 2017	Annually
Forest Parks	April 1007	
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves Natural England	August 2017	Bi-Annually
Marine Nature Reserves	August 2017	
Natural England	August 2017	Bi-Annually
National Nature Reserves Natural England	August 2017	Bi-Annually
National Parks		
Natural England	August 2017	Bi-Annually
Nitrate Vulnerable Zones		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	October 2015	
Ramsar Sites Natural England	August 2017	Bi-Annually
Sites of Special Scientific Interest Natural England	August 2017	Bi-Annually
Special Areas of Conservation Natural England	August 2017	Bi-Annually
Special Protection Areas Natural England	August 2017	Bi-Annually

soiltechnics environmental and geotechnical consultants

Data Suppliers

A selection of organisations who provide data within this report

Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SECTISH Environment Protection Agency
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology
Natural Resources Wales	Cyfoeth Naturiol Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Peter Brett Associates	peterbrett

soiltechnics environmental and geotechnical consultants

Useful Contacts

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
3	Teignbridge District Council - Environmental Health Department Forde House, Brunel Road, Newton Abbot, Devon, TQ12 4XX	Telephone: 01626 361101 Fax: 01626 331874 Email: envc@teignbridge.gov.uk Website: www.teignbridge.gov.uk
4	Torbay Council - Environmental Services Roebuck House, Abbey Road, Torquay, Devon, TQ2 5EJ	Telephone: 01803 201201 Fax: 01803 218010 Email: environment@torbay.gov.uk Website: www.torbay.gov.uk
5	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 023 8079 2000 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
6	Devon County Council County Hall, Topsham Road, Exeter, Devon, EX2 4QD	Telephone: 01392 382000 Fax: 01392 382135 Website: www.devon.gov.uk
7	PointX 7 Abbey Court, Eagle Way, Sowton, Exeter, Devon, EX2 7HY	Website: www.pointx.co.uk
8	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9966 Fax: 0844 844 9951 Email: helpdesk@landmark.co.uk Website: www.landmark.co.uk
9	Environment Agency - Head Office Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	Telephone: 01454 624400 Fax: 01454 624409
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.

	Geology 1:50,000 Maps Legends								
		Artificial Ground	and Landslip						
Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age	Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
\square	MGR	Made Ground (Undivided)	Artificial Deposit	Holocene - Holocene				Sandstone	
		Superficial (Geology			TQL	Torquay Limestone Formation	Limestone and Mudstone, Interbedded	Frasnian - Eifelian
Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age		NOSL	Nordon Formation	Lava, Basaltic	Frasnian - Eifelian
	ALV	Alluvium	Clay, Silt, Sand and Gravel	Flandrian - Flandrian		MLDL	Marldon Limestone Member	Limestone	Givetian - Eifelian
	HEAD	Head	Clay, Silt, Sand	Quaternary -			Faults		<u> </u>

Quaternary

Coolegy 1.50 000 Mana Laganda

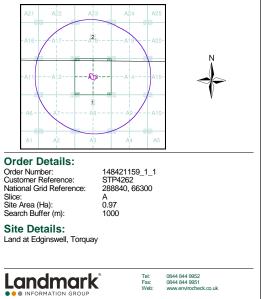
Bedrock and Faults

and Gravel

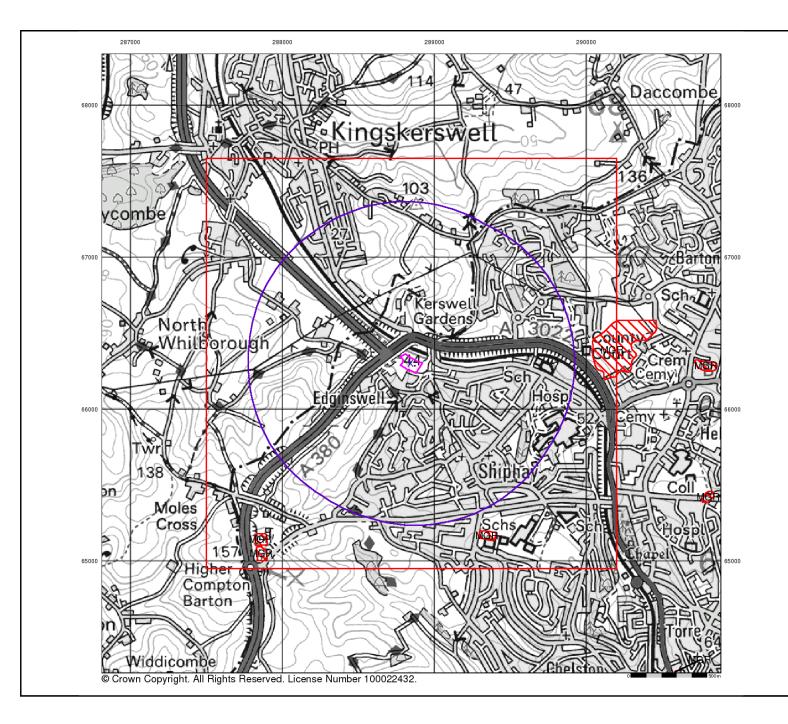
Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	AGR	Aller Gravel Formation	Gravel	Eocene - Eocene
	UGS	Upper Greensand Formation	Sandstone	Cenomanian - Albian
	TOBR	Torbay Breccia Formation	Breccia and Sandstone, Interbedded	Cisuralian - Cisuralian
	WBR	Watcombe Breccia Formation	Siltstone and Sandstone	Permian - Permian
	WBR	Watcombe Breccia Formation	Breccia	Permian - Permian
	OBR	Oddicombe Breccia Formation	Breccia	Permian - Permian
	WWYM	Whiteway Mudstone Formation	Slate	Tournaisian - Famennian
	EOL	East Ogwell Limestone Formation	Limestone, Dolomitic	Frasnian - Givetian
	EOL	East Ogwell Limestone Formation	Limestone	Frasnian - Givetian
	FT	Foxley Tuff Formation	Tuff	Givetian - Givetian
	BLHT	Blair Hill Tuff Member	Tuff	Givetian - Givetian
	NOSL	Nordon Formation	Limestone	Frasnian - Eifelian
	NOSL	Nordon Formation	Metalimestone	Frasnian - Eifelian
	NOSL	Nordon Formation	Slate	Frasnian - Eifelian
	NOSL	Nordon Formation	Mudstone, Siltstone, Limestone and	Frasnian - Eifelian

soiltechnics

Geology 1:50,000 Maps


This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.

previously published paper maps. The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

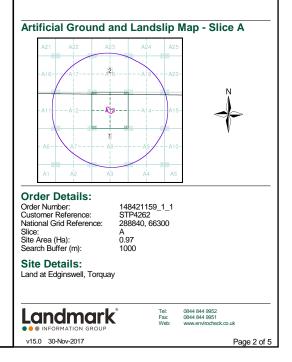

Geology 1:50,000 Maps Coverage						
Map ID:	2	Map ID:	1			
Map Sheet No:	339	Map Sheet No:	350			
Map Name:	Newton Abbot	Map Name:	Torquay			
Map Date:	1976	Map Date:	2004			
Bedrock Geology:	Available	Bedrock Geology:	Available			
Superficial Geology:	Available	Superficial Geology:	Available			
Artificial Geology:	Available	Artificial Geology:	Available			
Faults:	Not Supplied	Faults:	Not Supplied			
Landslip:	Available	Landslip:	Available			
Rock Segments:	Not Supplied	Rock Segments:	Not Supplied			

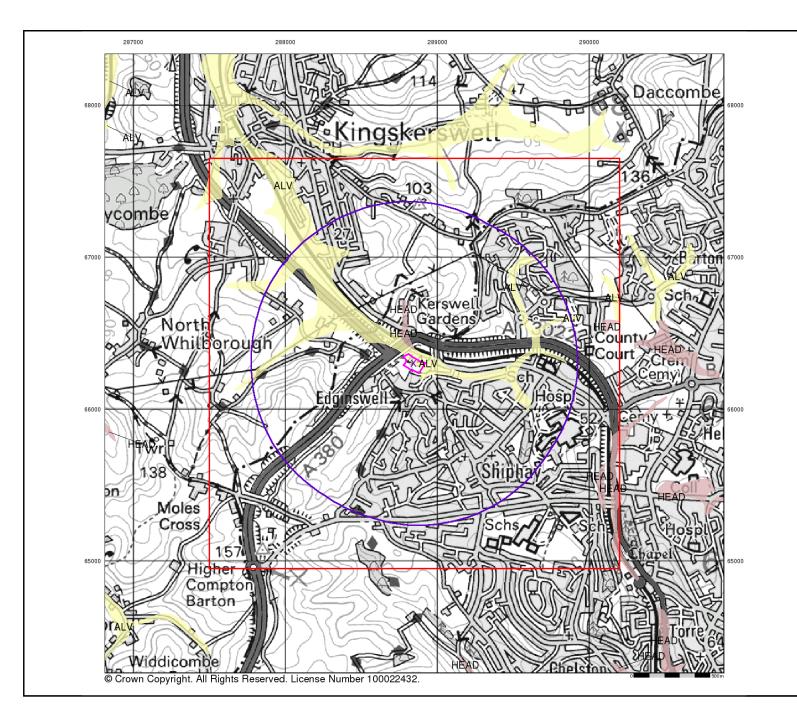
v15.0 30-Nov-2017

Page 1 of 5

environmental and geotechnical consultants

Artificial Ground and Landslip


Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often engineering conditions and unstable ground.

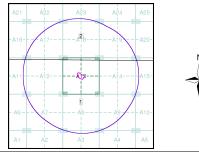

Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil
- heaps on the natural ground surface. Worked ground areas where the ground has been cut away such as quarries and road cuttings.
- Infilled ground areas where the ground has been cut away then wholly or partially backfilled.

Landscaped ground - areas where the surface has been reshaped.
Disturbed ground - areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground separately.

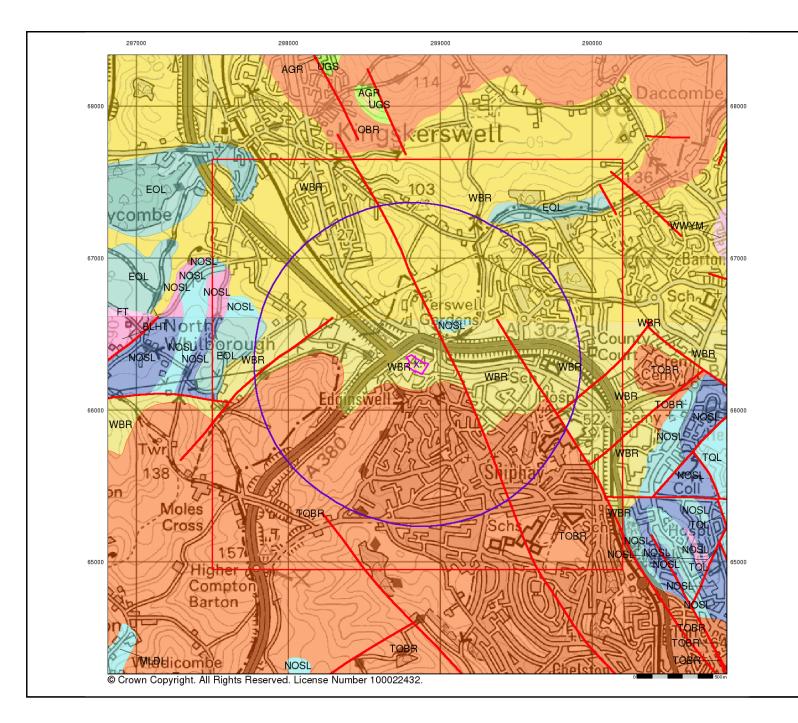
Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

environmental and geotechnical consultants


Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.


Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

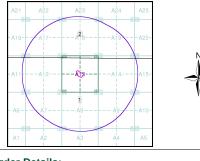
Superficial Geology Map - Slice A

Order Details: Order Number: Customer Reference: 148421159 1 1 STP4262 288840, 66300 National Grid Reference: Slice: A 0.97 Site Area (Ha): Search Buffer (m): 1000 Site Details: Land at Edginswell, Torquay Tel: Fax: 0844 844 9952 0844 844 9951 Landmark Web www.envirocheck.co.uk

v15.0 30-Nov-2017

environmental and geotechnical consultants

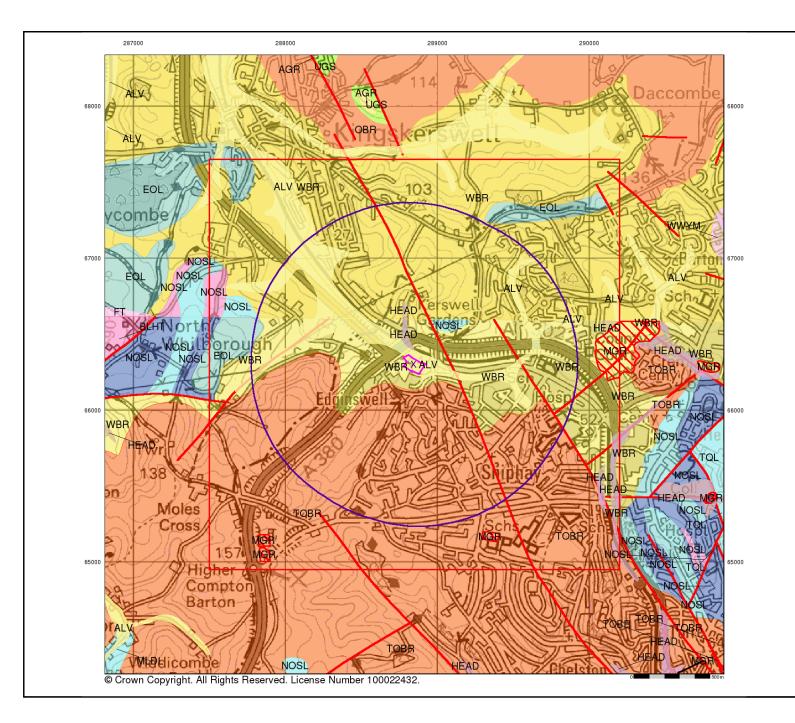
Bedrock and Faults


Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.



Order Details: Order Number: Customer Reference: 148421159 1 1 STP4262 288840, 66300 National Grid Reference: Slice: A 0.97 Site Area (Ha): Search Buffer (m): 1000 Site Details: Land at Edginswell, Torquay Landmark Tel: Fax: 0844 844 9952 0844 844 9951

Web

www.envirocheck.co.uk

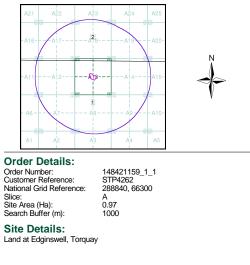
v15.0 30-Nov-2017

environmental and geotechnical consultants

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

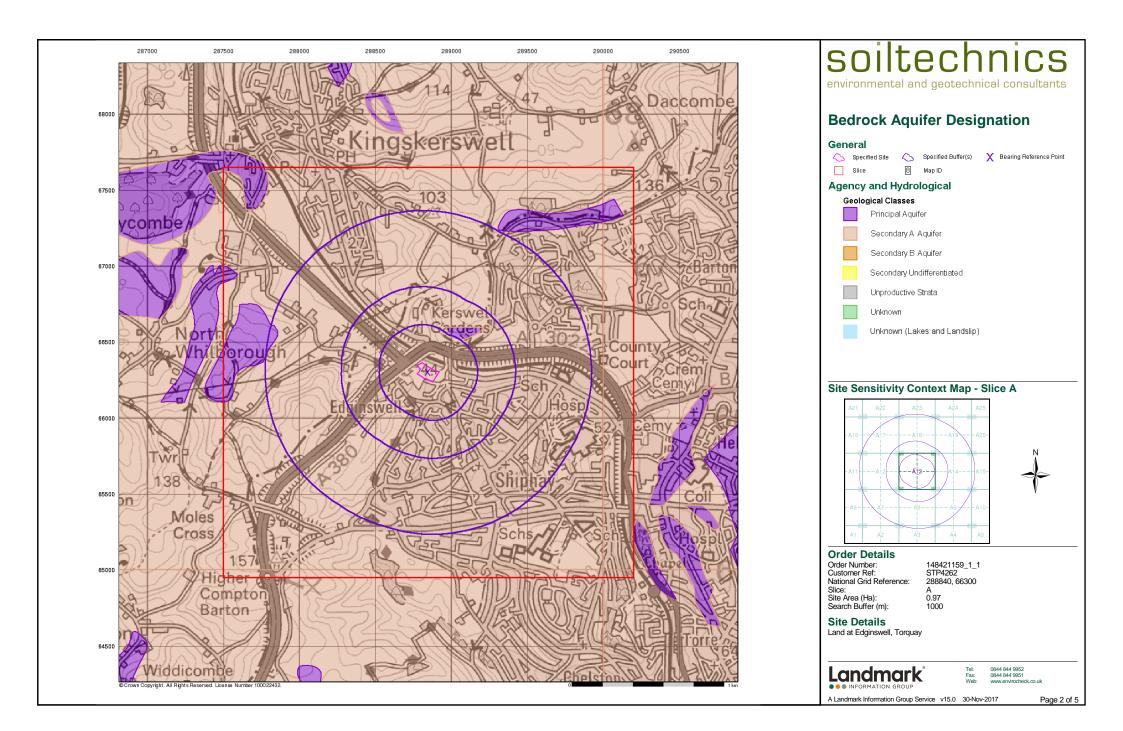
Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.

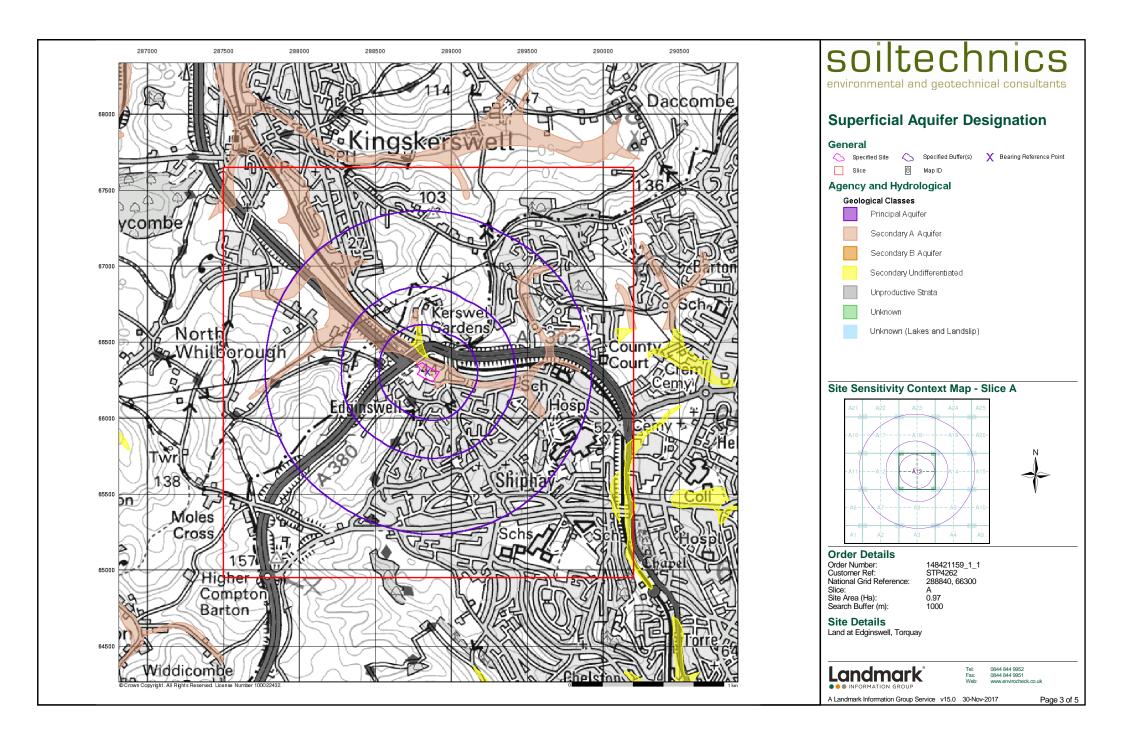

Additional Information

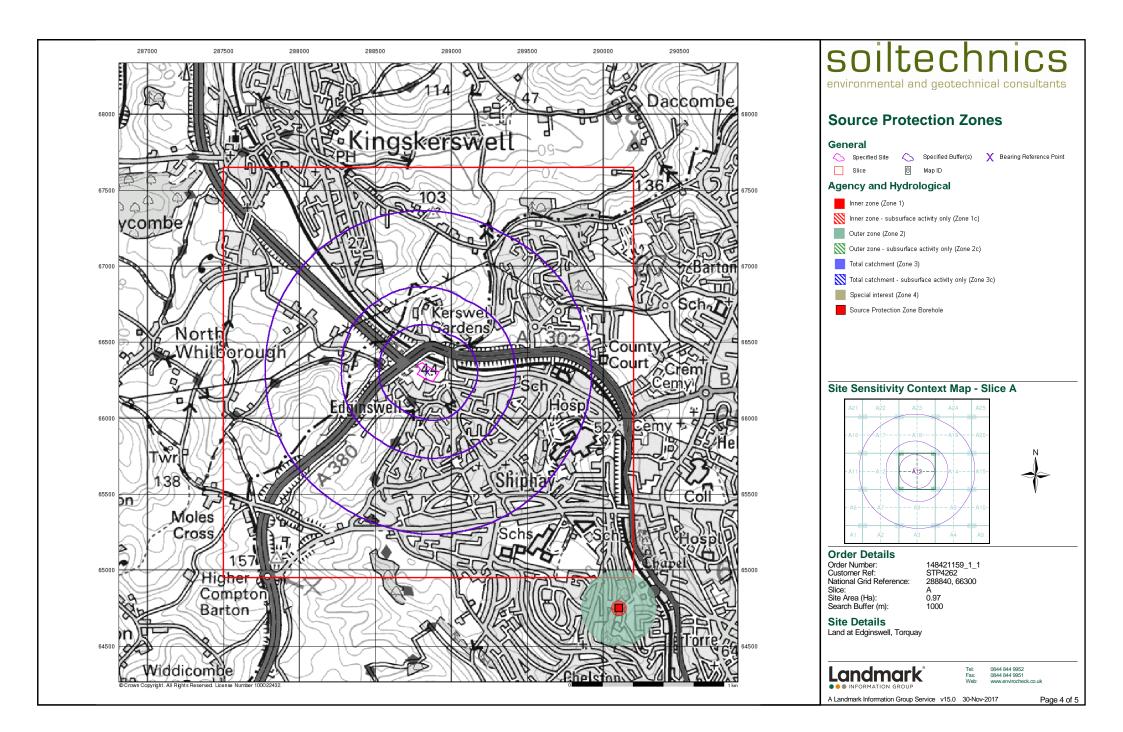
More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS website.

Contact

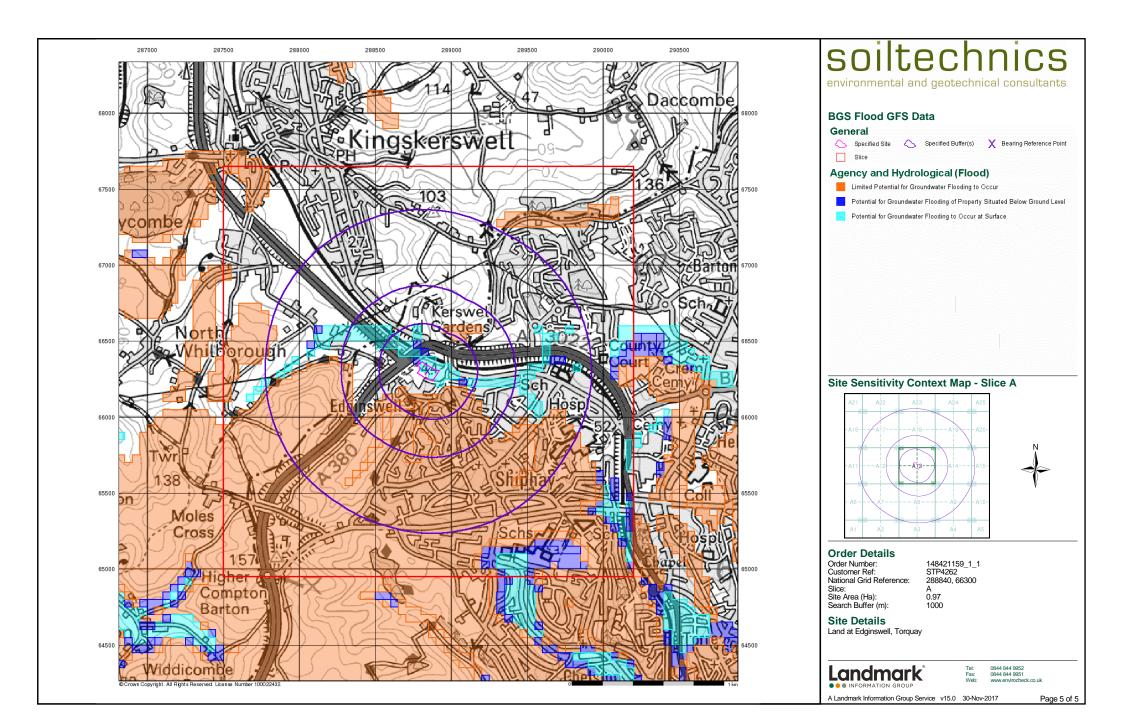
British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

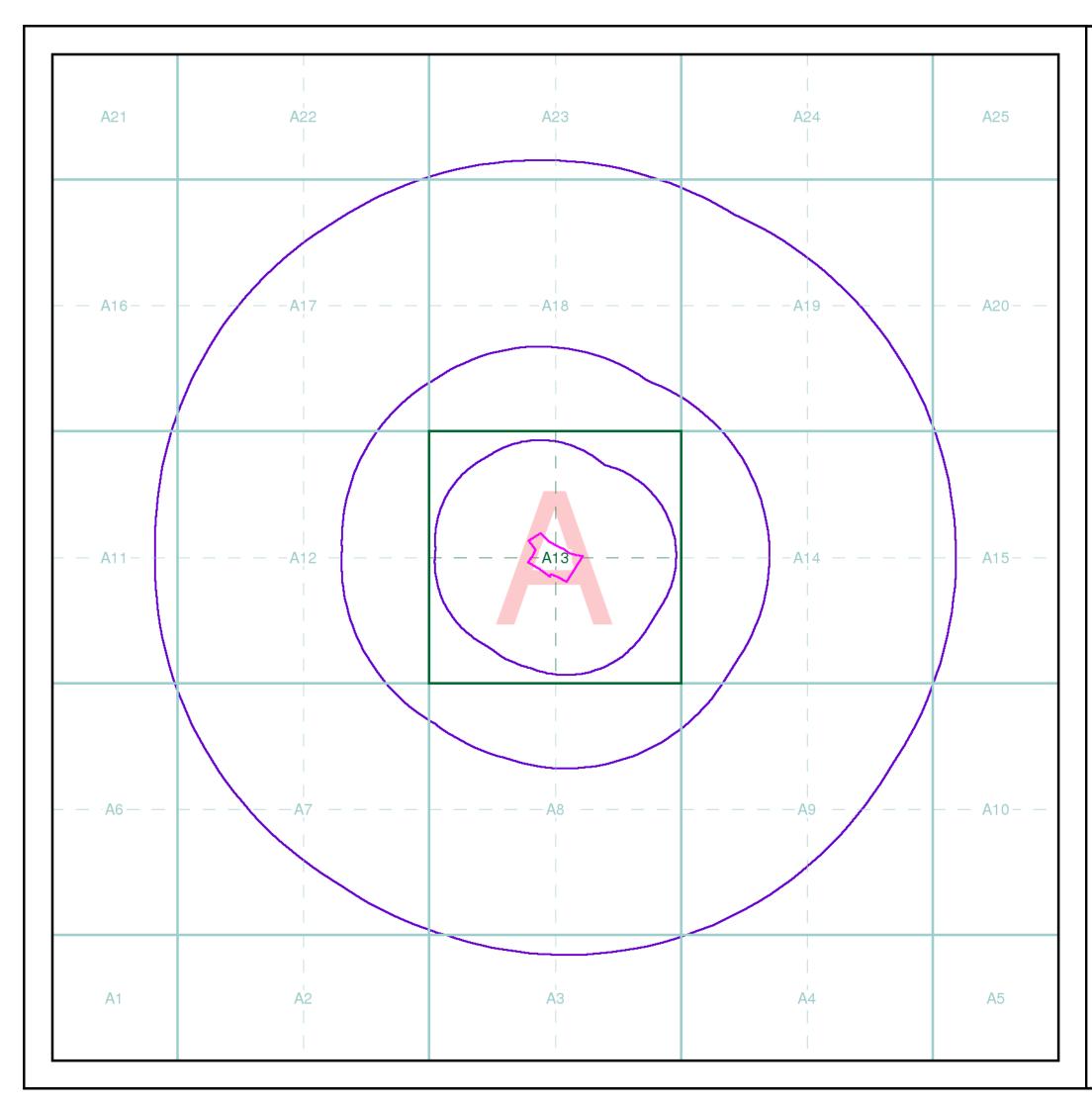

Combined Geology Map - Slice A





 Landmark
 Tel: Fax: Web:
 08/4 8/4 9952 08/4 8/4 9351 www.em/incheck.co.uk


 v15.0
 30-Nov-2017
 Page 5 of 5



Index Map

For ease of identification, your site and buffer have been split into Slices, Segments and Quadrants. These are illustrated on the Index Map opposite and explained further below.

Slice

Each slice represents a 1:10,000 plot area (2.7km x 2.7km) for your site and buffer. A large site and buffer may be made up of several slices (represented by a red outline), that are referenced by letters of the alphabet, starting from the bottom left corner of the slice "grid". This grid does not relate to National Grid lines but is designed to give best fit over the site and buffer.

Segment

A segment represents a 1:2,500 plot area. Segments that have plot files associated with them are shown in dark green, others in light blue. These are numbered from the bottom left hand corner within each slice.

Quadrant

A quadrant is a quarter of a segment. These are labelled as NW, NE, SW, SE and are referenced in the datasheet to allow features to be quickly located on plots. Therefore a feature that has a quadrant reference of A7NW will be in Slice A, Segment 7 and the NW Quadrant.

A selection of organisations who provide data within this report:

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Envirocheck reports are compiled from 136 different sources of data.

Client Details

Ms R Brown, Soiltechnics, Cedar Barn, White Lodge, Walgrave, Northampton, NN6 9PY

Order Details

 Order Number:
 148421159_1_1

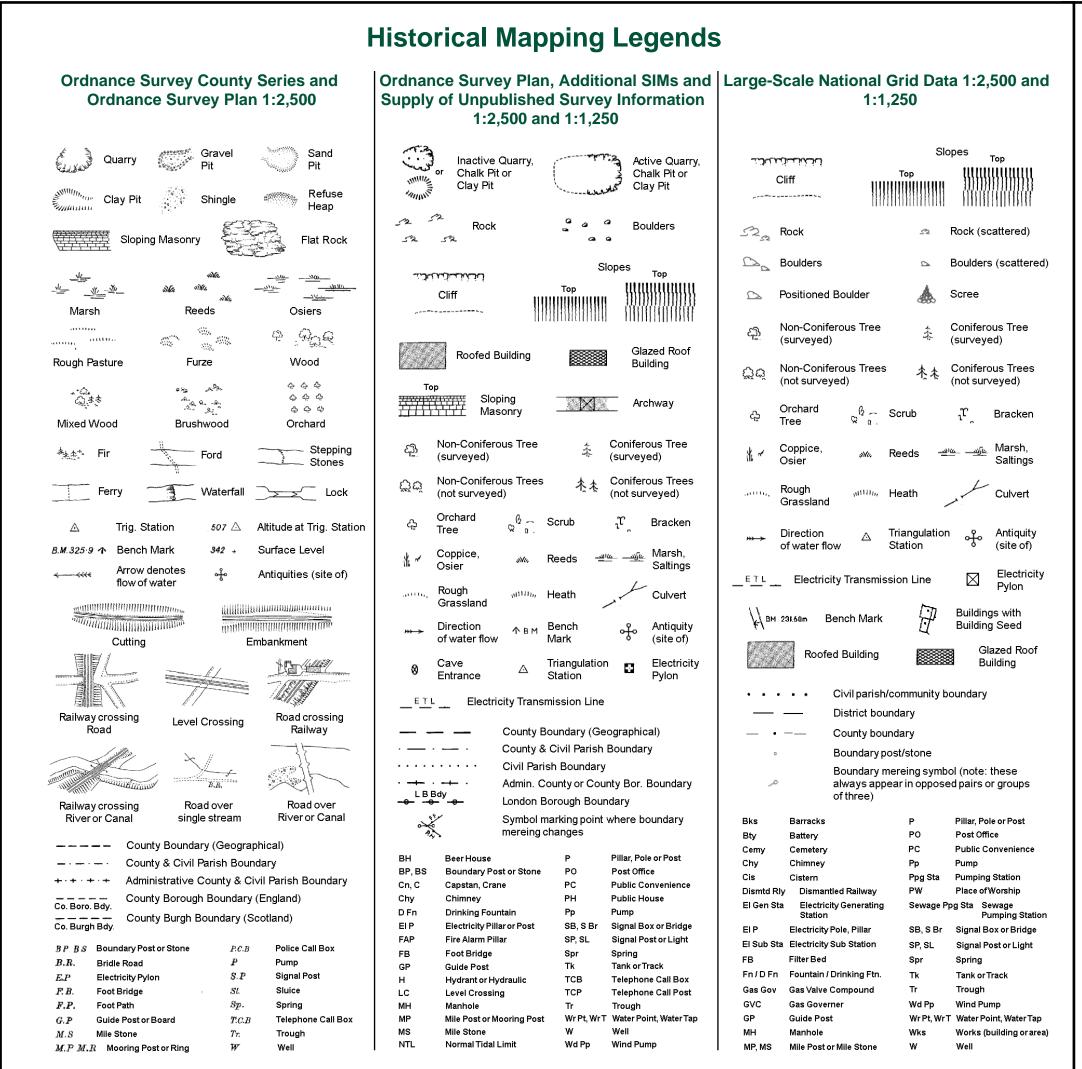
 Customer Ref:
 STP4262

 National Grid Reference:
 288840, 66300

 Site Area (Ha):
 0.97

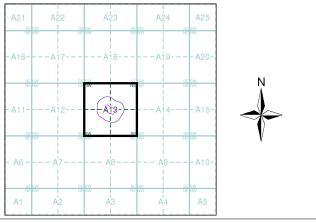
 Search Buffer (m):
 1000

Site Details


Land at Edginswell, Torquay

Full Terms and Conditions can be found on the following link: http://www.landmarkinfo.co.uk/Terms/Show/515

Tel: Fax: Web: 0844 844 9952 0844 844 9951 www.envirocheck.co.uk

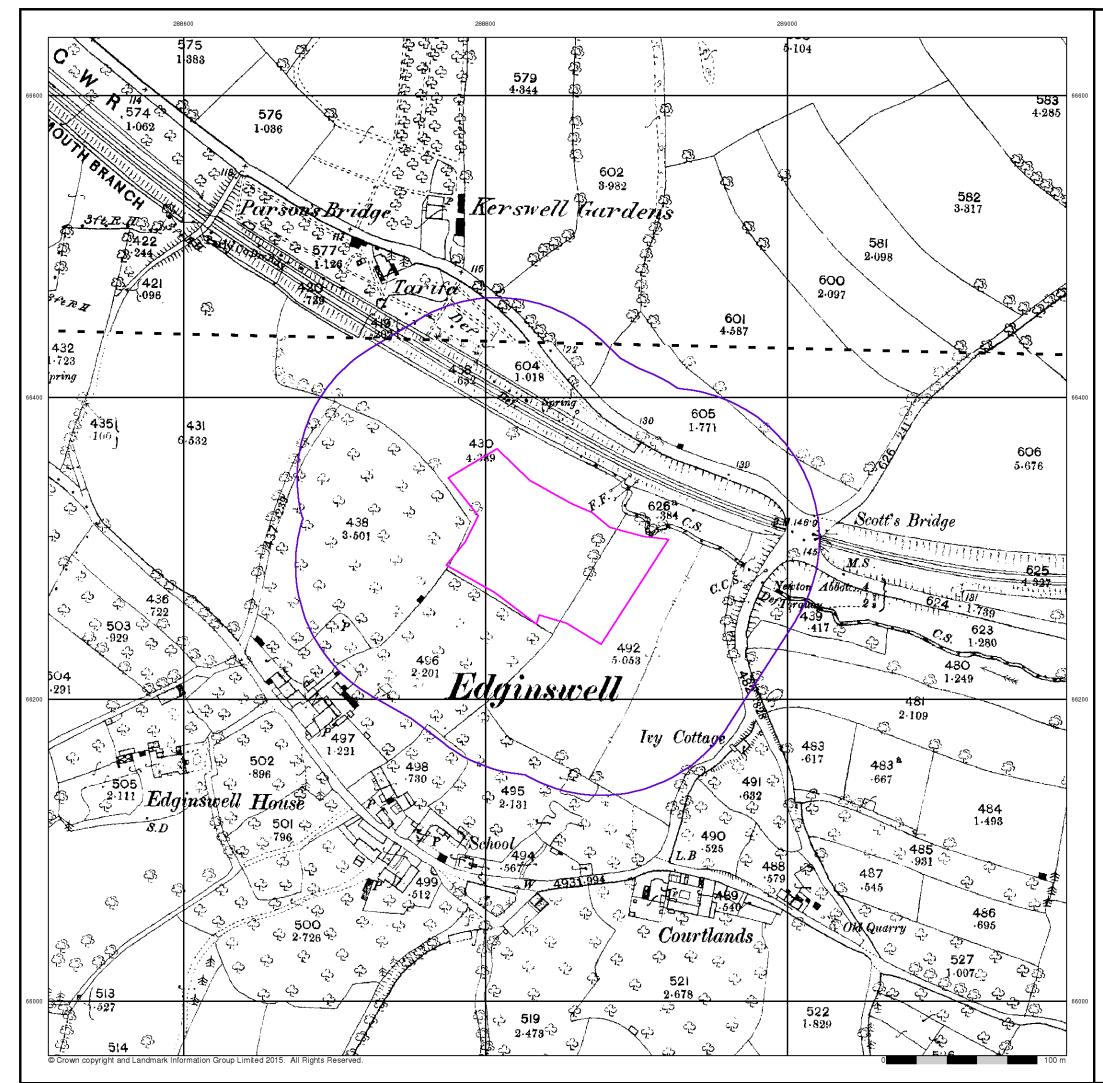

A Landmark Information Group Service v50.0 30-Nov-2017 Page 1 of 1

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Devon	1:2,500	1889 - 1890	2
Devon	1:2,500	1906	3
Devon	1:2,500	1933 - 1937	4
Ordnance Survey Plan	1:1,250	1952 - 1986	5
Ordnance Survey Plan	1:2,500	1953 - 1955	6
Ordnance Survey Plan	1:1,250	1957 - 1958	7
Ordnance Survey Plan	1:1,250	1965 - 1969	8
Ordnance Survey Plan	1:2,500	1970 - 1971	9
Ordnance Survey Plan	1:1,250	1975	10
Additional SIMs	1:2,500	1979	11
Additional SIMs	1:1,250	1984 - 1992	12
Additional SIMs	1:1,250	1990	13
Additional SIMs	1:2,500	1992	14
Large-Scale National Grid Data	1:1,250	1993	15
Large-Scale National Grid Data	1:2,500	1993	16
Large-Scale National Grid Data	1:1,250	1994	17
Large-Scale National Grid Data	1:1,250	1996	18
Historical Aerial Photography	1:2,500	1999	19

Historical Map - Segment A13

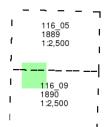
Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

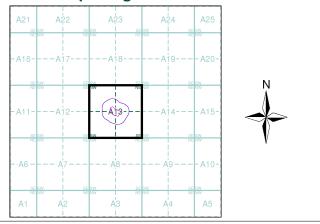
Site Details

Land at Edginswell, Torquay

Tel: Fax: Web:



Devon


Published 1889 - 1890 Source map scale - 1:2,500

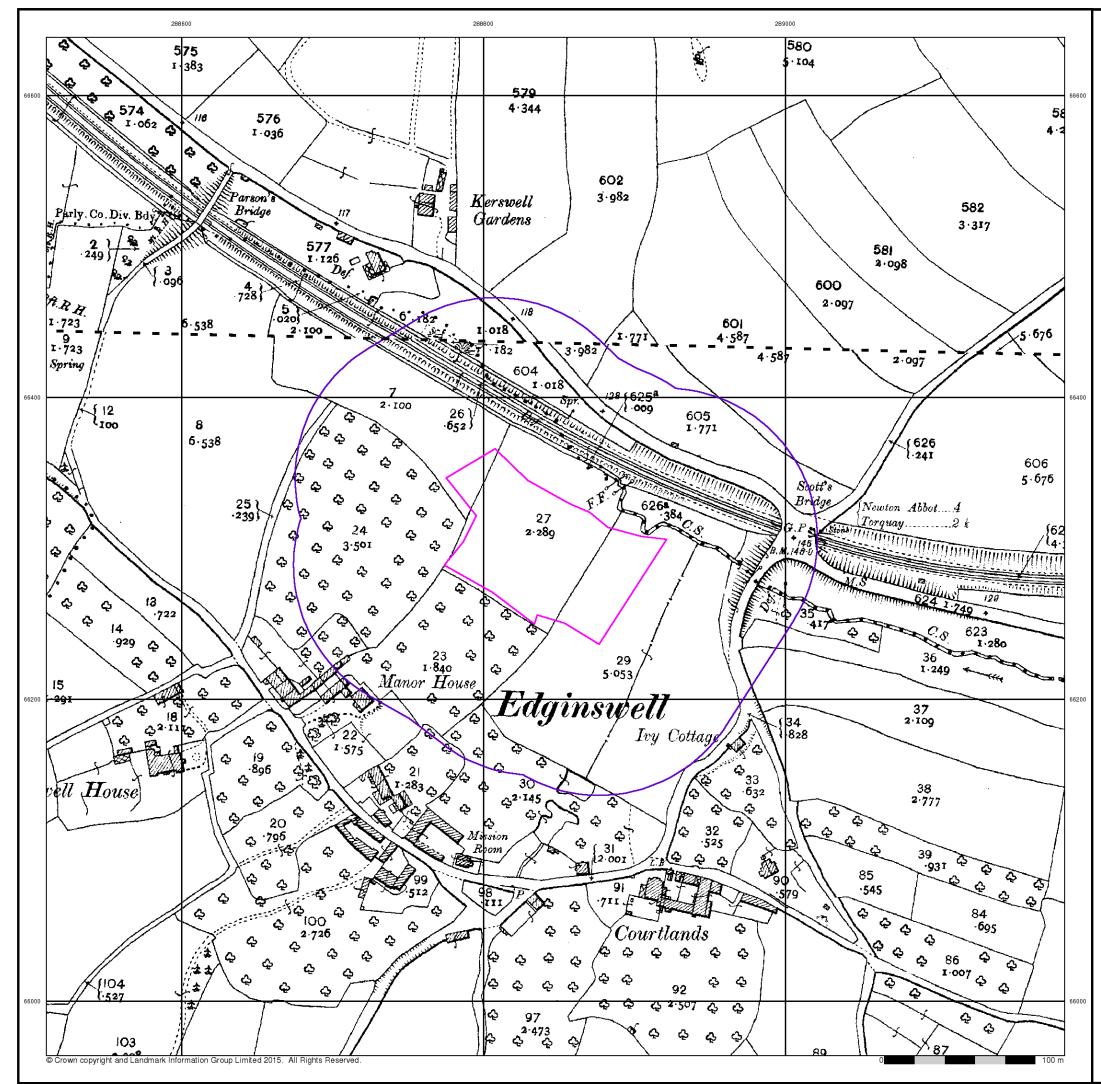
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

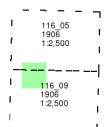
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100


Site Details

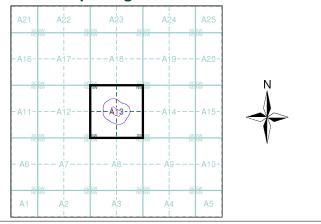
Land at Edginswell, Torquay

0844 844 9952

Tel: Fax: Web:



Devon Published 1906


Source map scale - 1:2,500

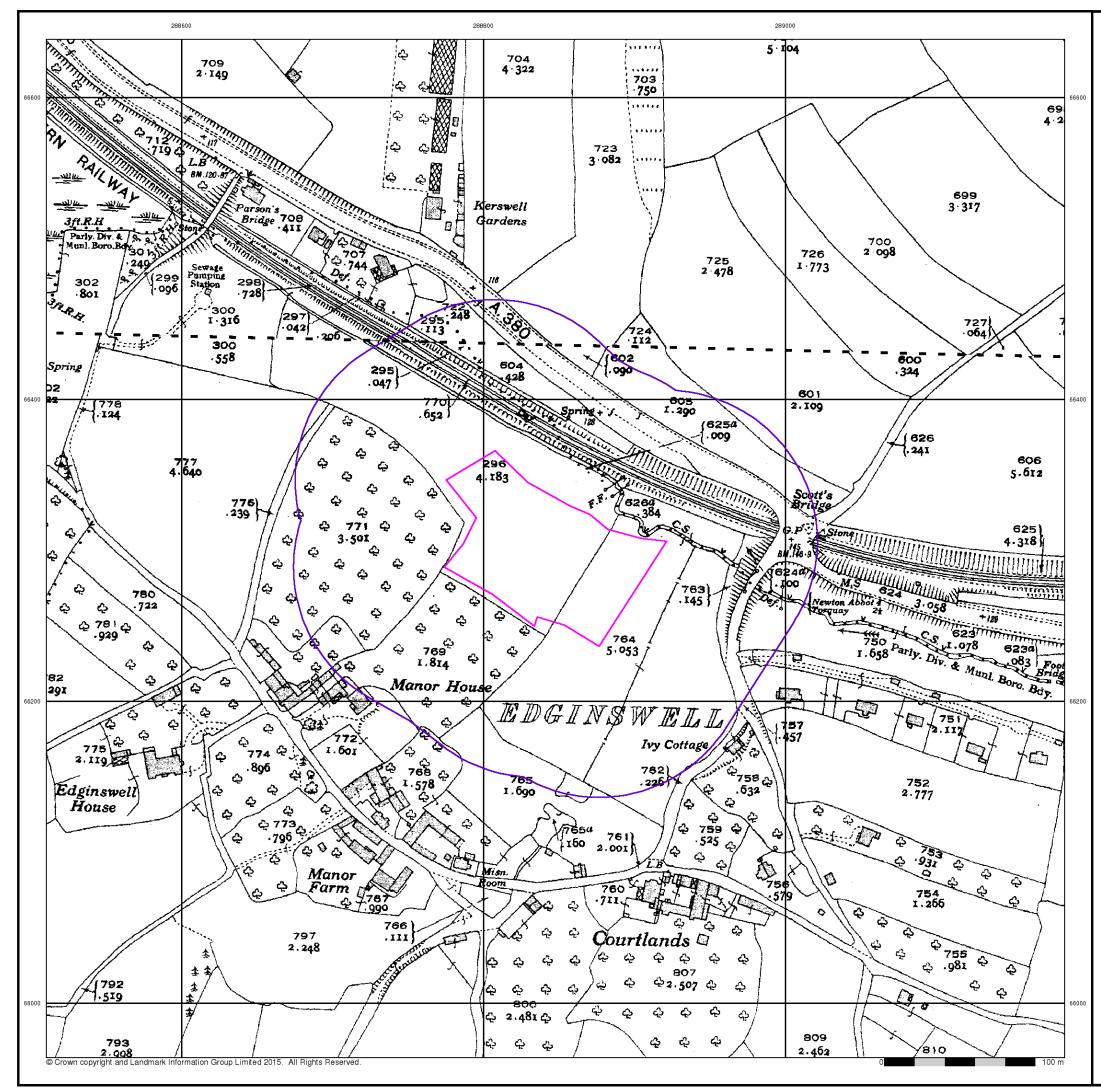
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

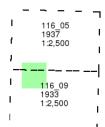
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100


Site Details

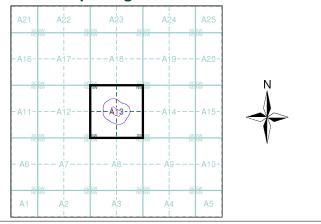
Land at Edginswell, Torquay

0844 0844 www

Tel: Fax: Web:



Devon


Published 1933 - 1937 Source map scale - 1:2,500

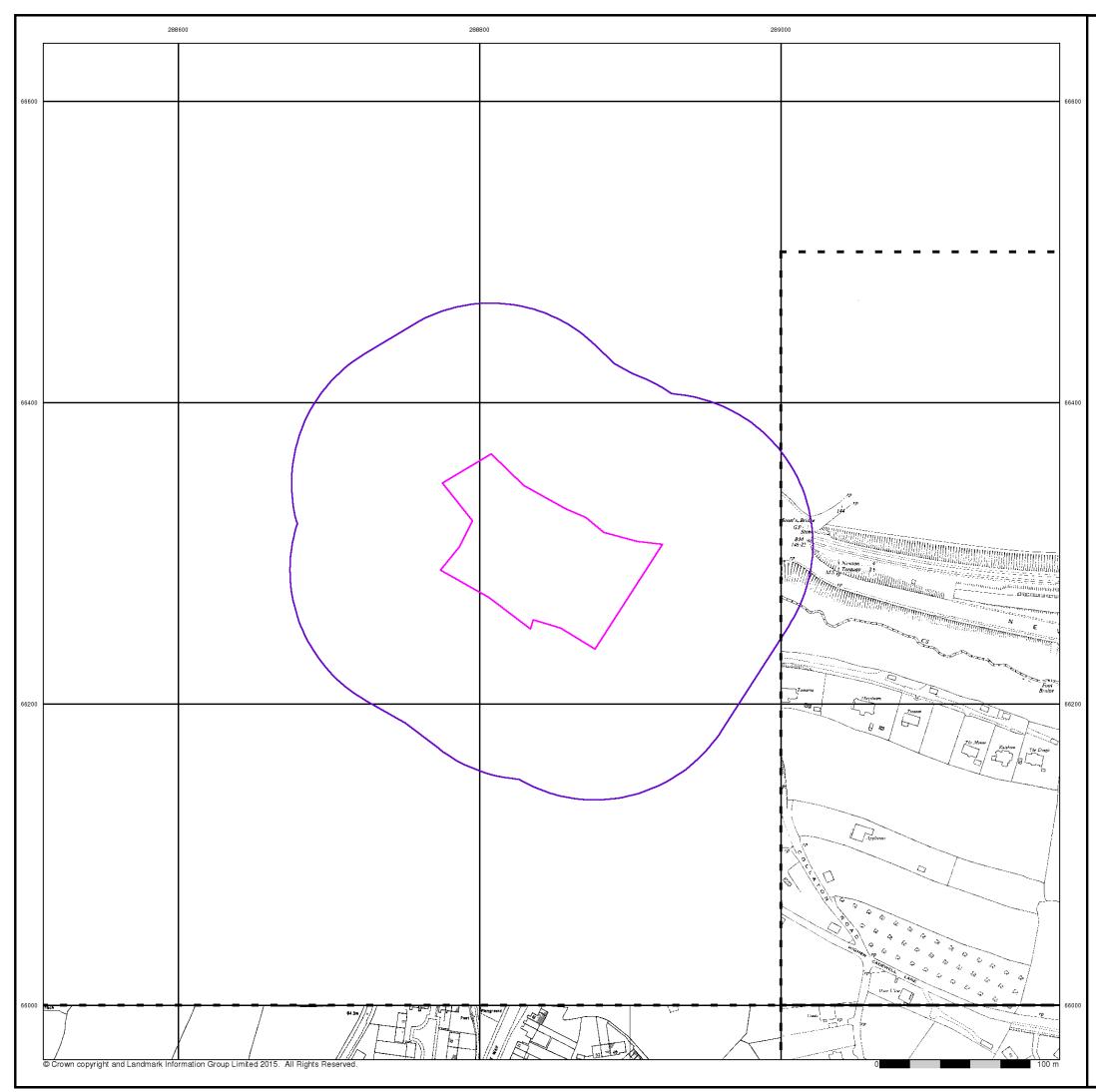
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

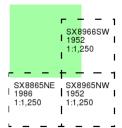
Order Details

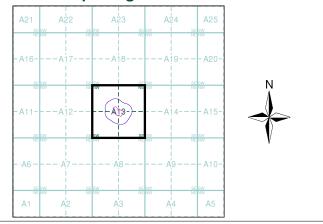
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100


Site Details

Land at Edginswell, Torquay

Tel:


Fax: Web:

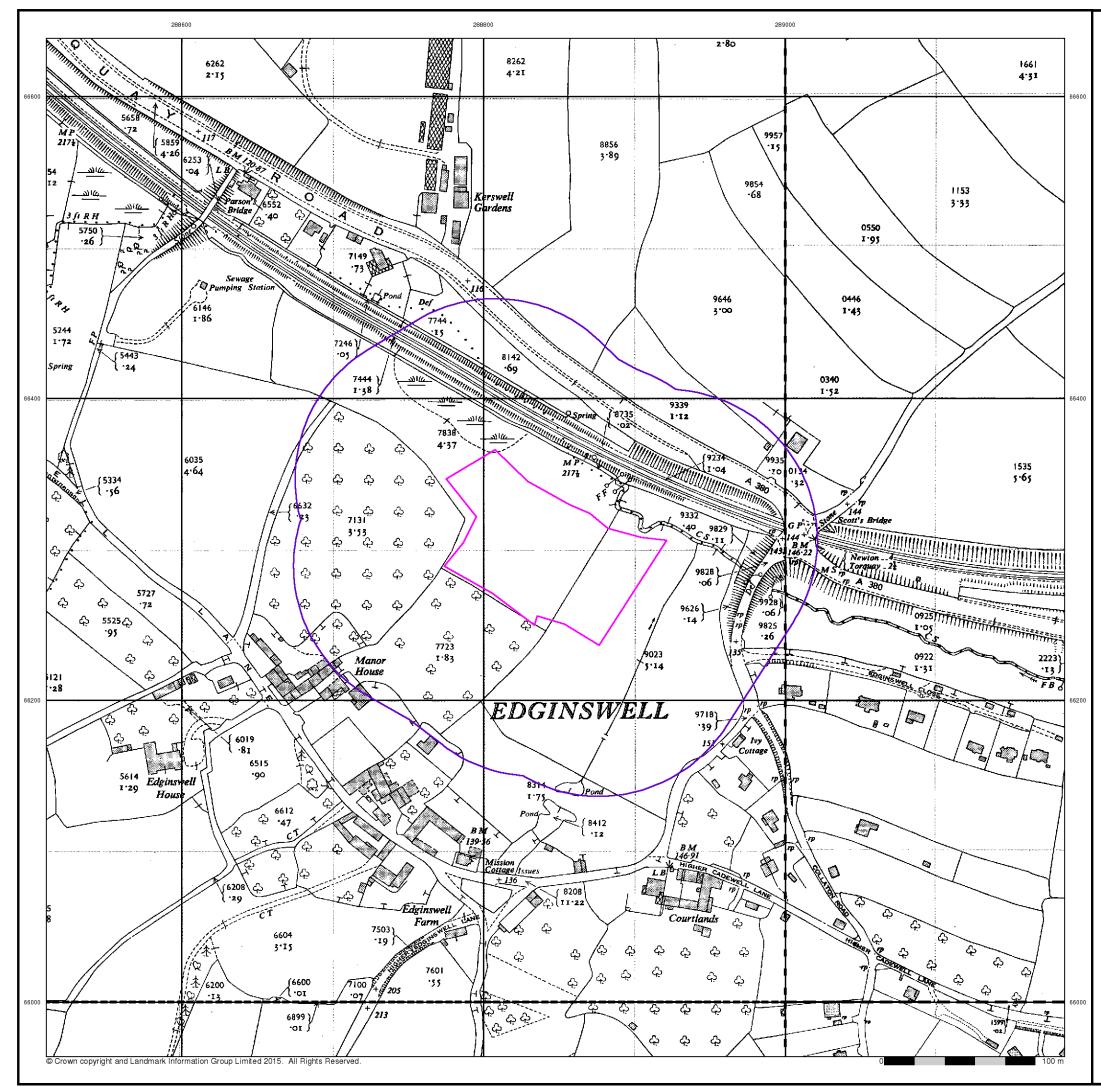

Ordnance Survey Plan Published 1952 - 1986 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

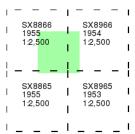
Historical Map - Segment A13

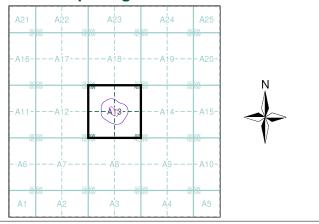
Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

Site Details

Land at Edginswell, Torquay


Tel: 084 Fax: 084 Web: www

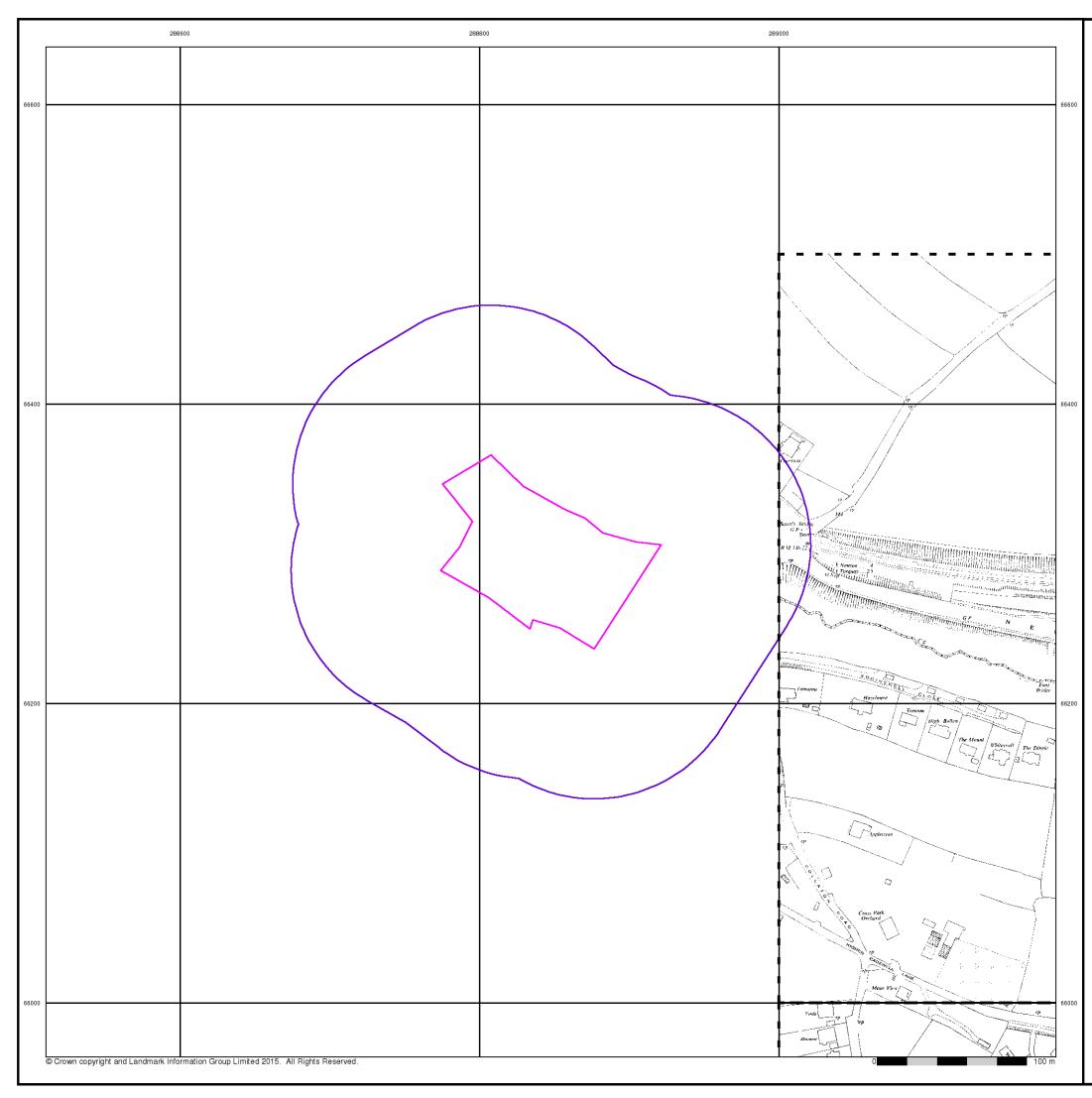

Ordnance Survey Plan Published 1953 - 1955 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

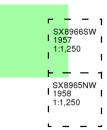
Historical Map - Segment A13

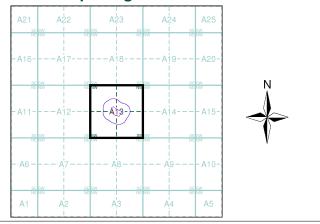
Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

Site Details

Land at Edginswell, Torquay


Tel: Fax: Web:


Ordnance Survey Plan Published 1957 - 1958 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

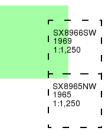
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

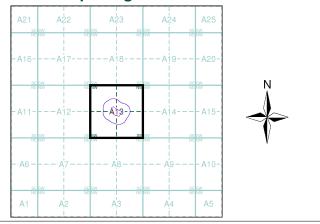
Site Details

Land at Edginswell, Torquay

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk


A Landmark Information Group Service v50.0 30-Nov-2017 Page 7 of 19

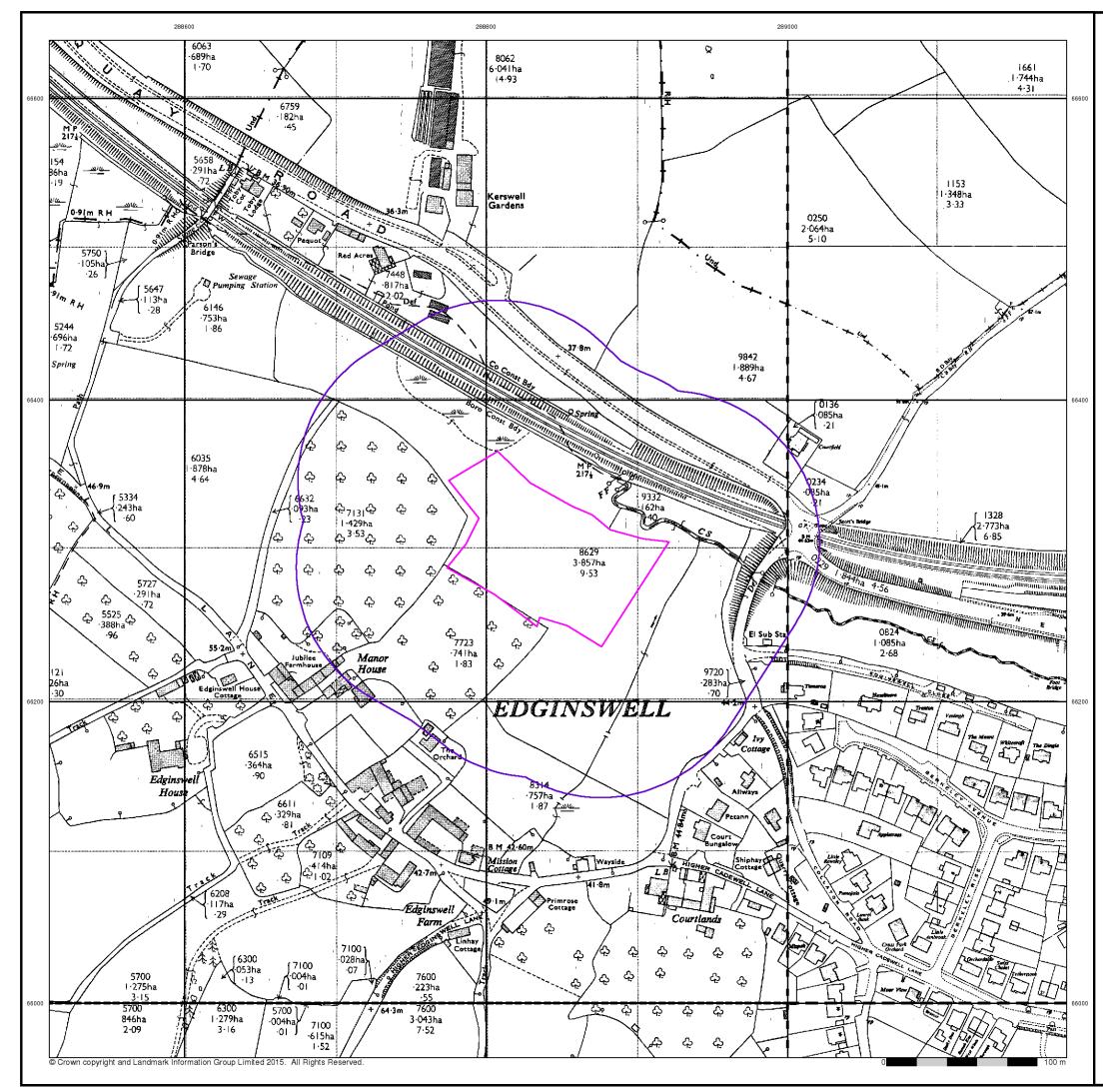

Ordnance Survey Plan Published 1965 - 1969 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

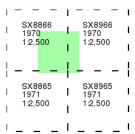
Historical Map - Segment A13

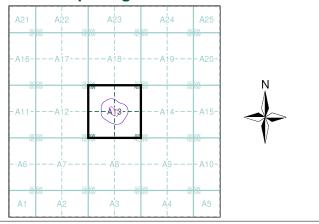
Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

Site Details

Land at Edginswell, Torquay


Tel: Fax: Web:

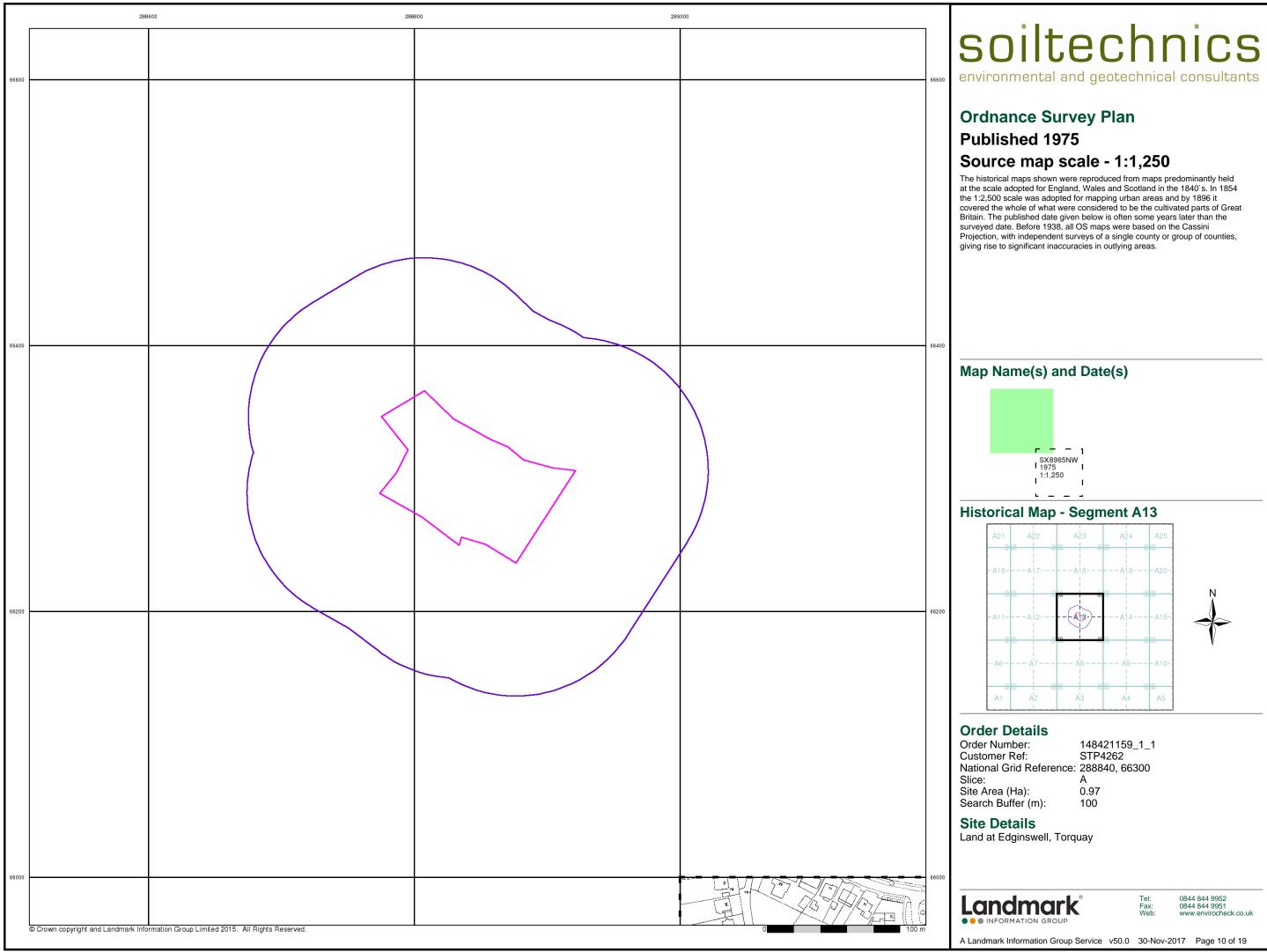

Ordnance Survey Plan Published 1970 - 1971 Source map scale - 1:2,500

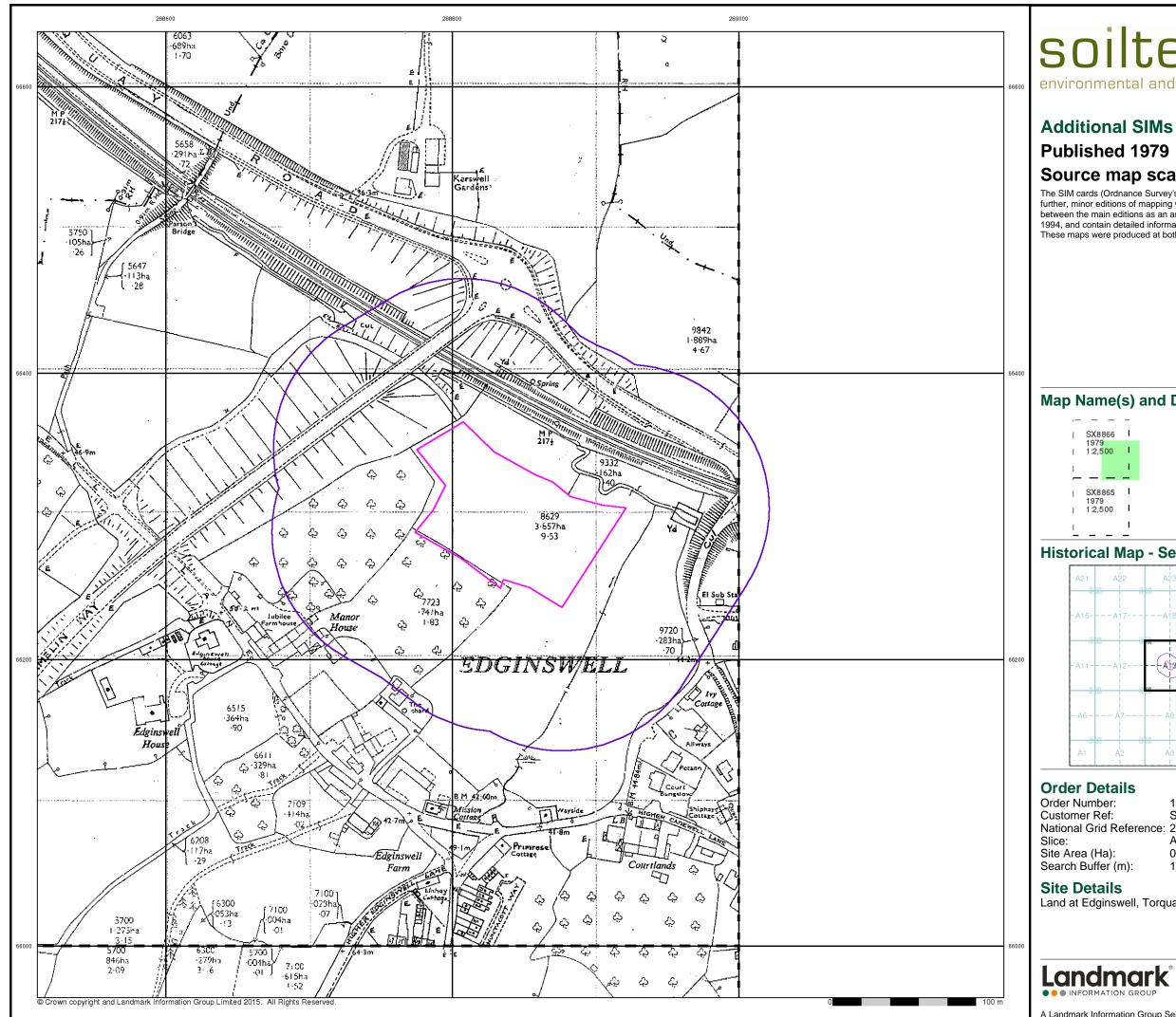
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

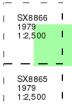
Order Details

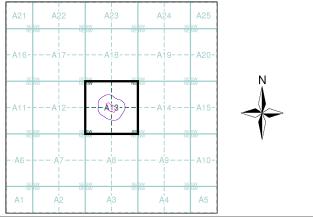

Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100


Site Details

Land at Edginswell, Torquay

Tel: Fax: Web:

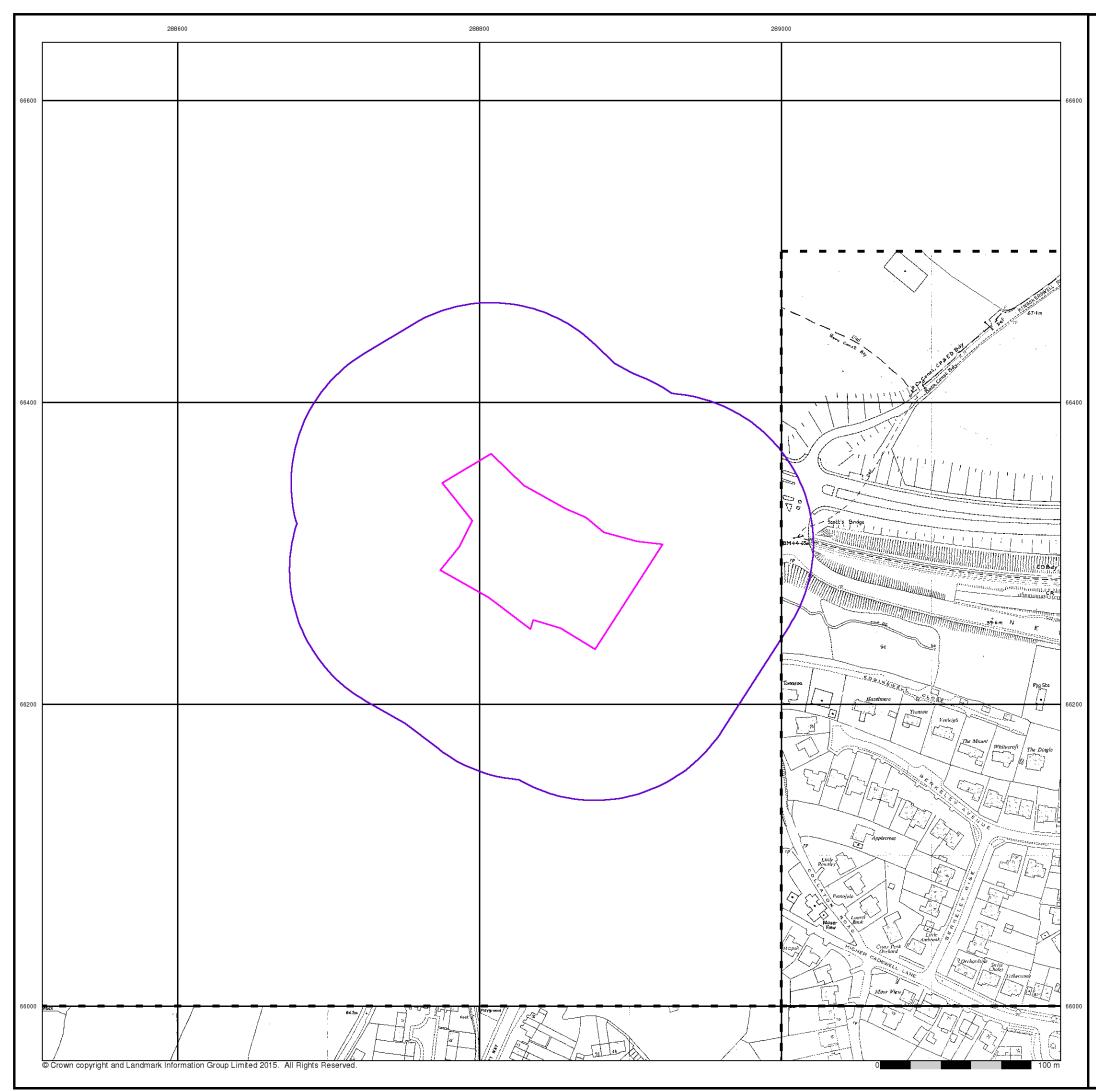



Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

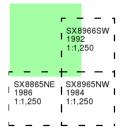


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	Α
Site Area (Ha):	0.97
Search Buffer (m):	100

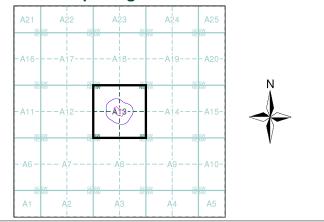
Land at Edginswell, Torquay

0844 844 9952

Tel: Fax: Web:


Additional SIMs

Published 1984 - 1992


Source map scale - 1:1,250

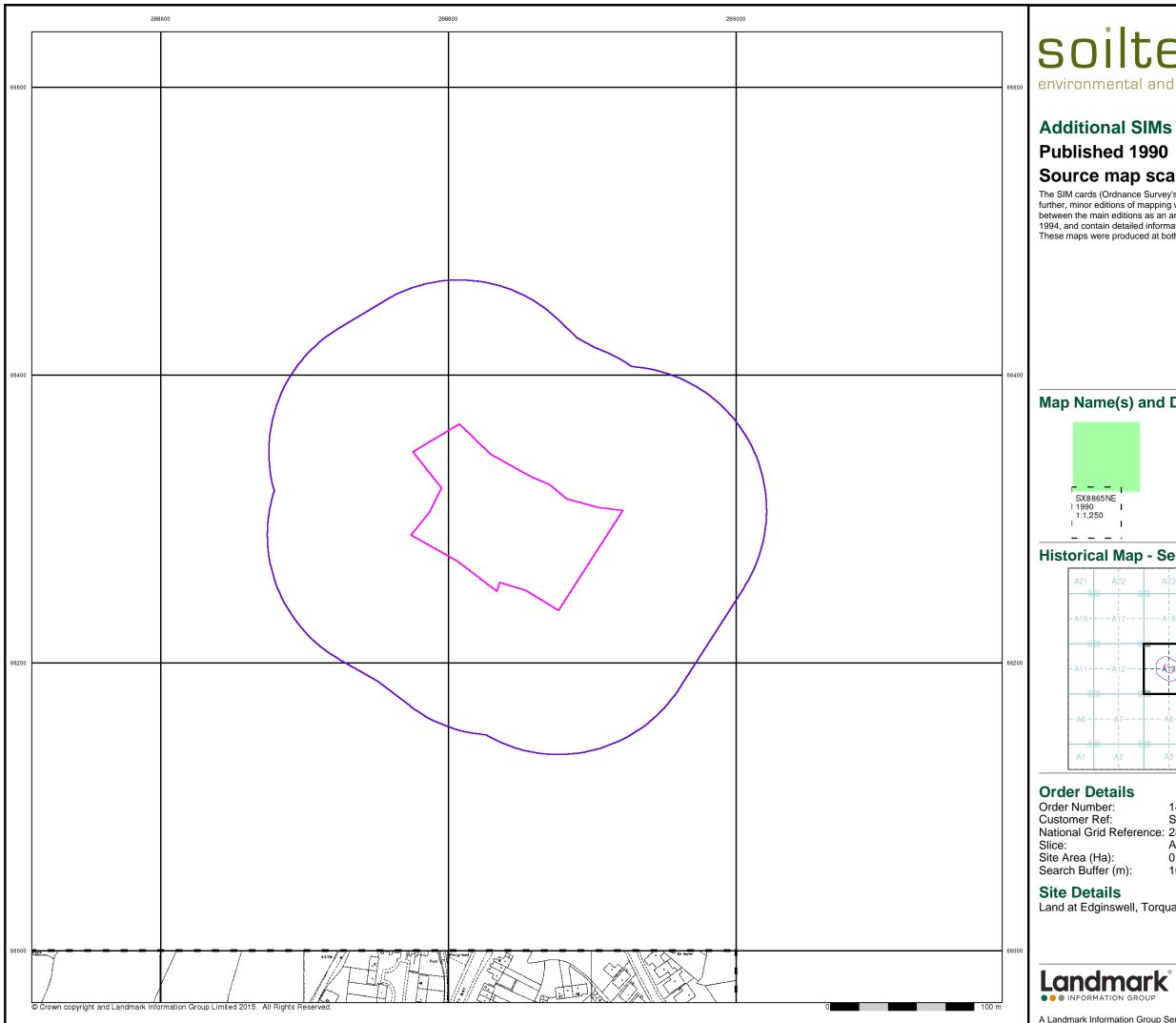
The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

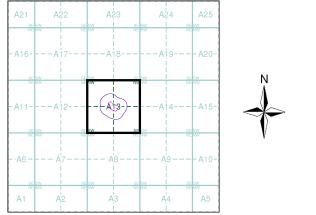
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100


Site Details

Land at Edginswell, Torquay

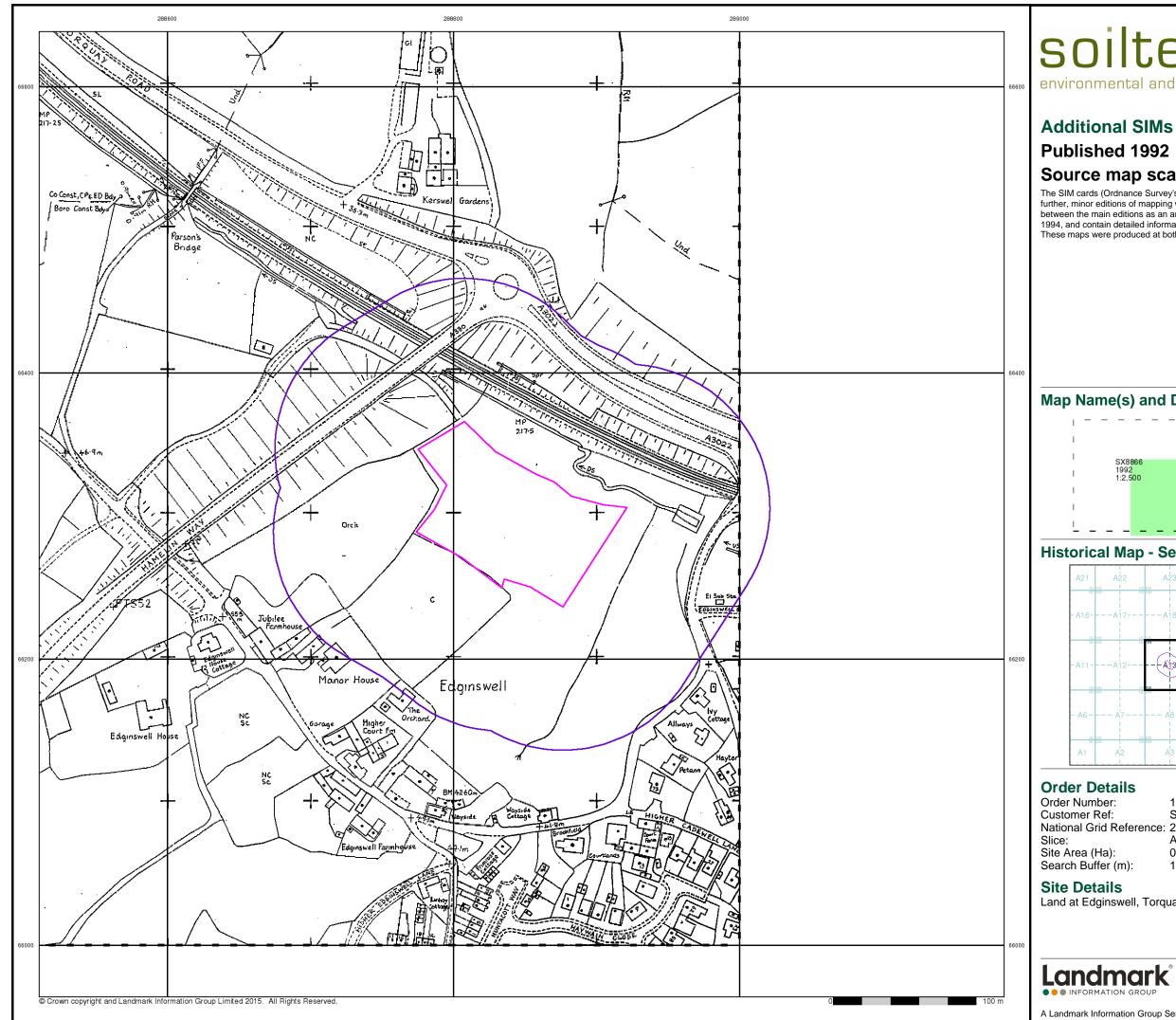
0844 844 9952

Tel: Fax: Web:


Source map scale - 1:1,250

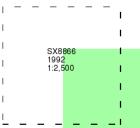
The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

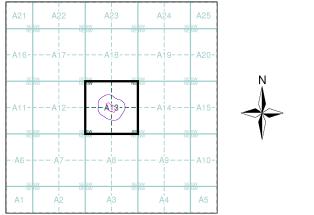
Map Name(s) and Date(s)


Historical Map - Segment A13

Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	Α
Site Area (Ha):	0.97
Search Buffer (m):	100

Land at Edginswell, Torquay


Tel: Fax: Web:


Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

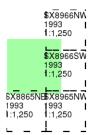
Historical Map - Segment A13

Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

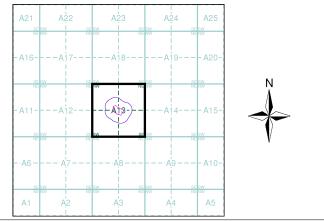
Land at Edginswell, Torquay

0844 844 9952

Tel: Fax: Web:



Large-Scale National Grid Data Published 1993

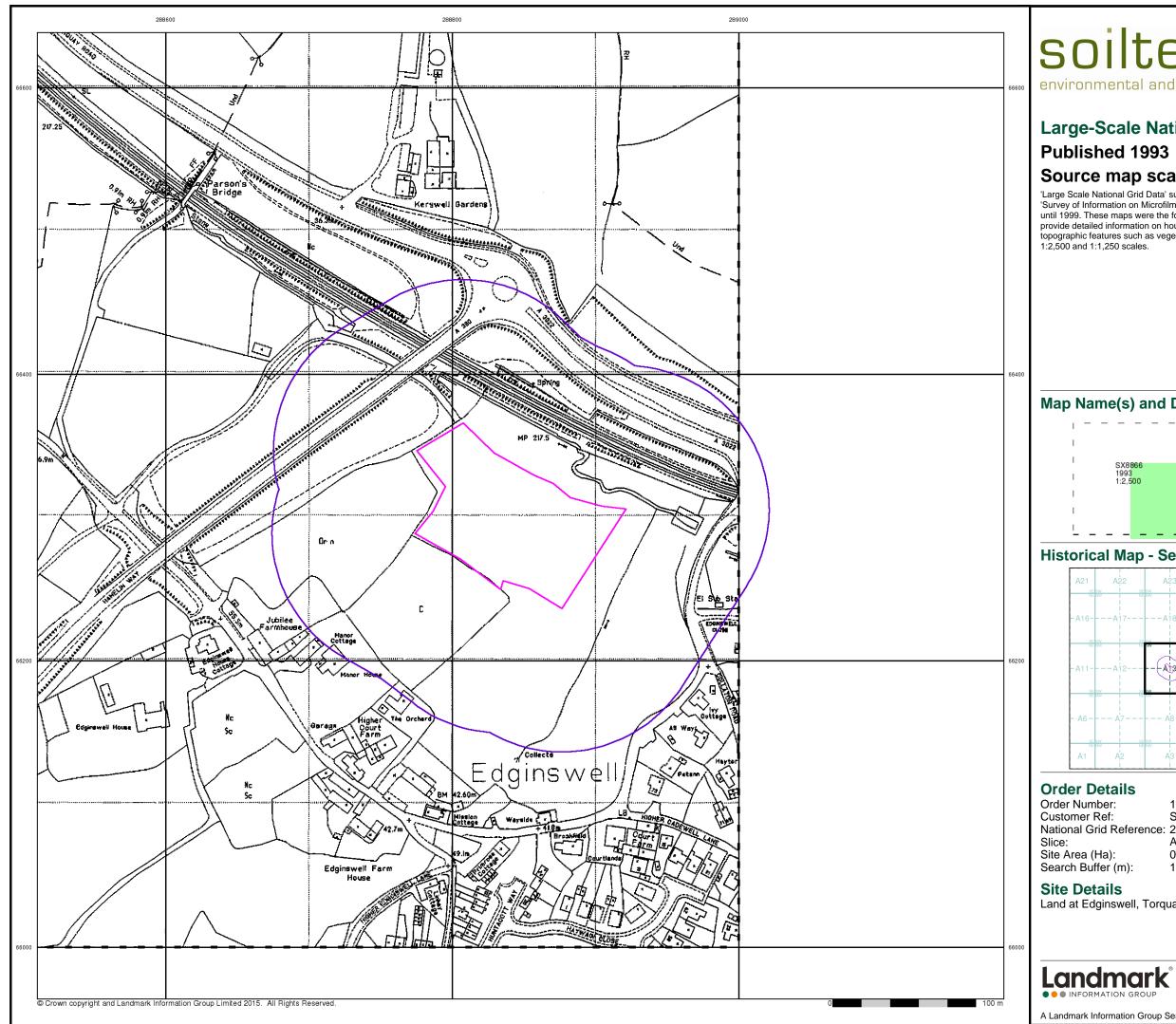

Source map scale - 1:1,250

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details


Order Number: Customer Ref:	148421159_1_1 STP4262
National Grid Reference:	• · · · = • =
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

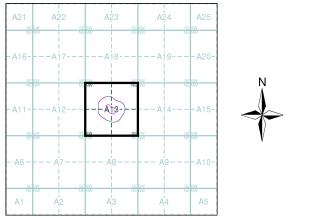
Site Details

Land at Edginswell, Torquay

Tel: Fax: Web:



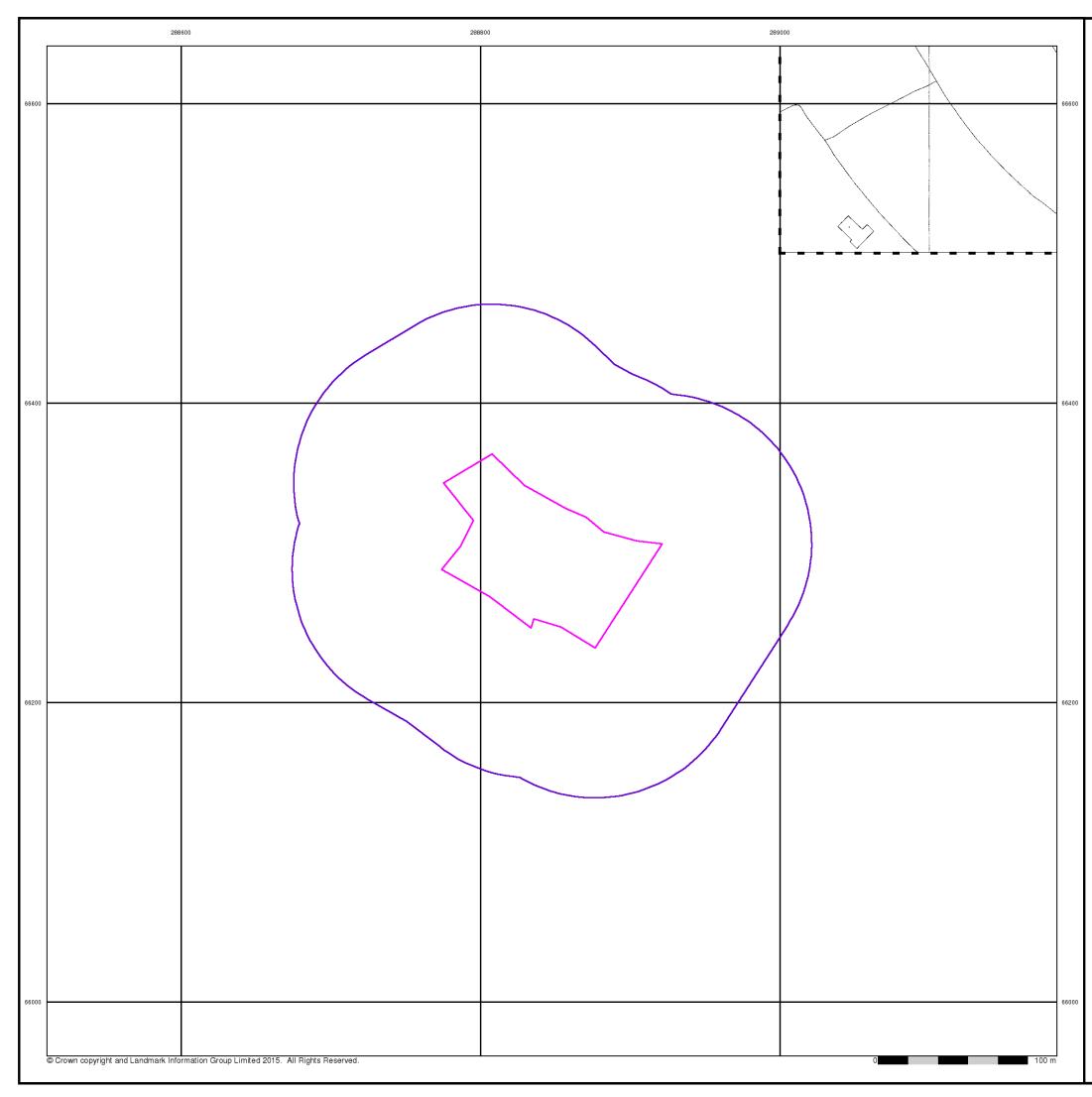
Large-Scale National Grid Data


Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

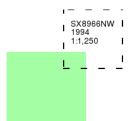


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	Α
Site Area (Ha):	0.97
Search Buffer (m):	100

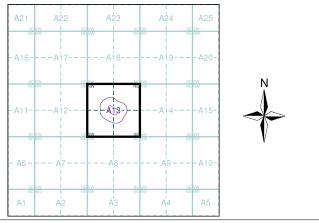
Land at Edginswell, Torquay

0844 844 9952

Tel: Fax: Web:



Large-Scale National Grid Data Published 1994


Source map scale - 1:1,250

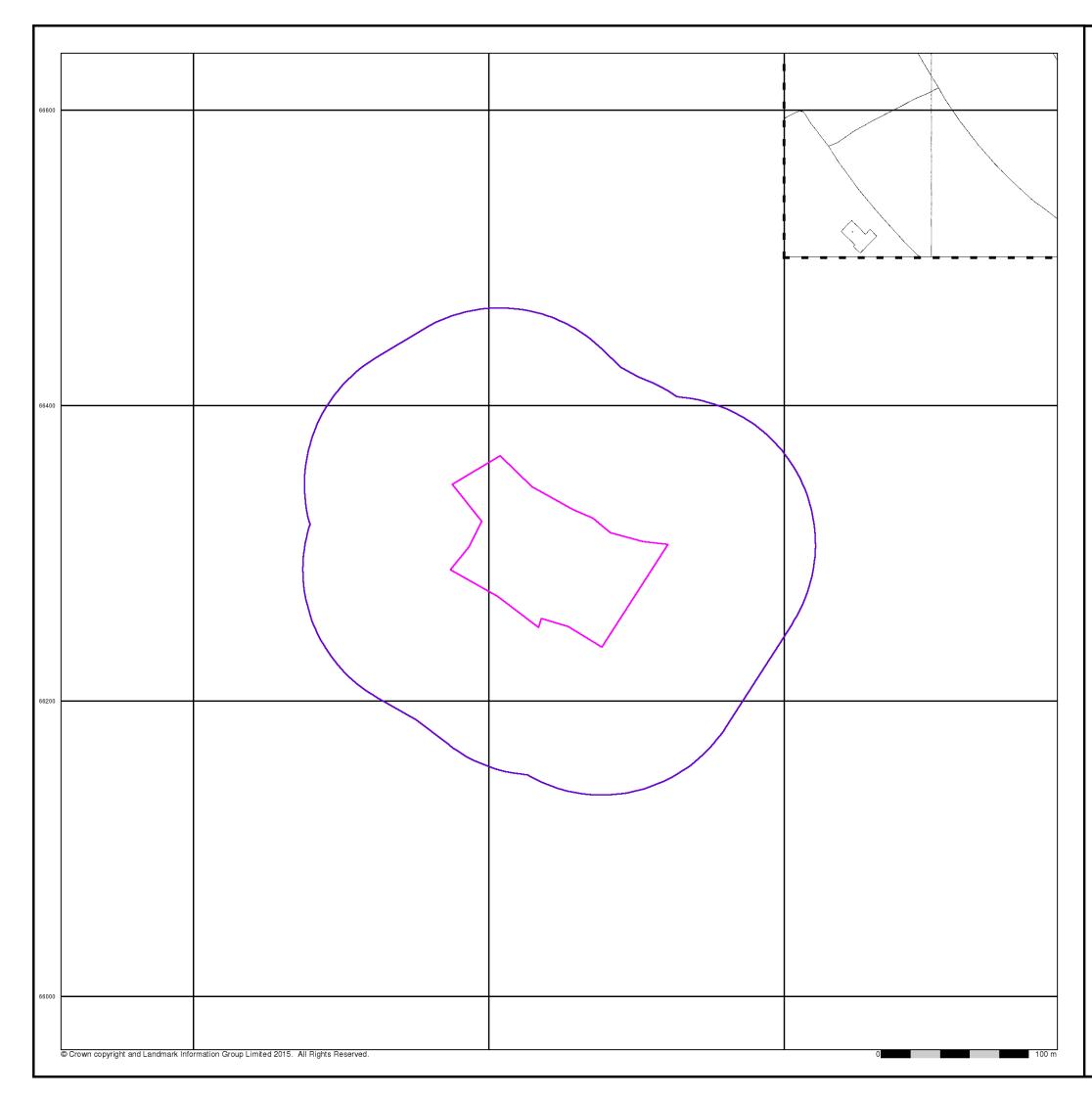
'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

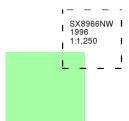
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100


Site Details

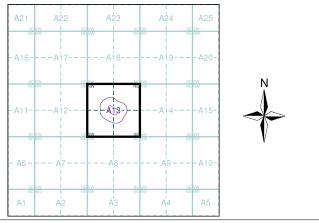
Land at Edginswell, Torquay

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:



Large-Scale National Grid Data Published 1996


Source map scale - 1:1,250

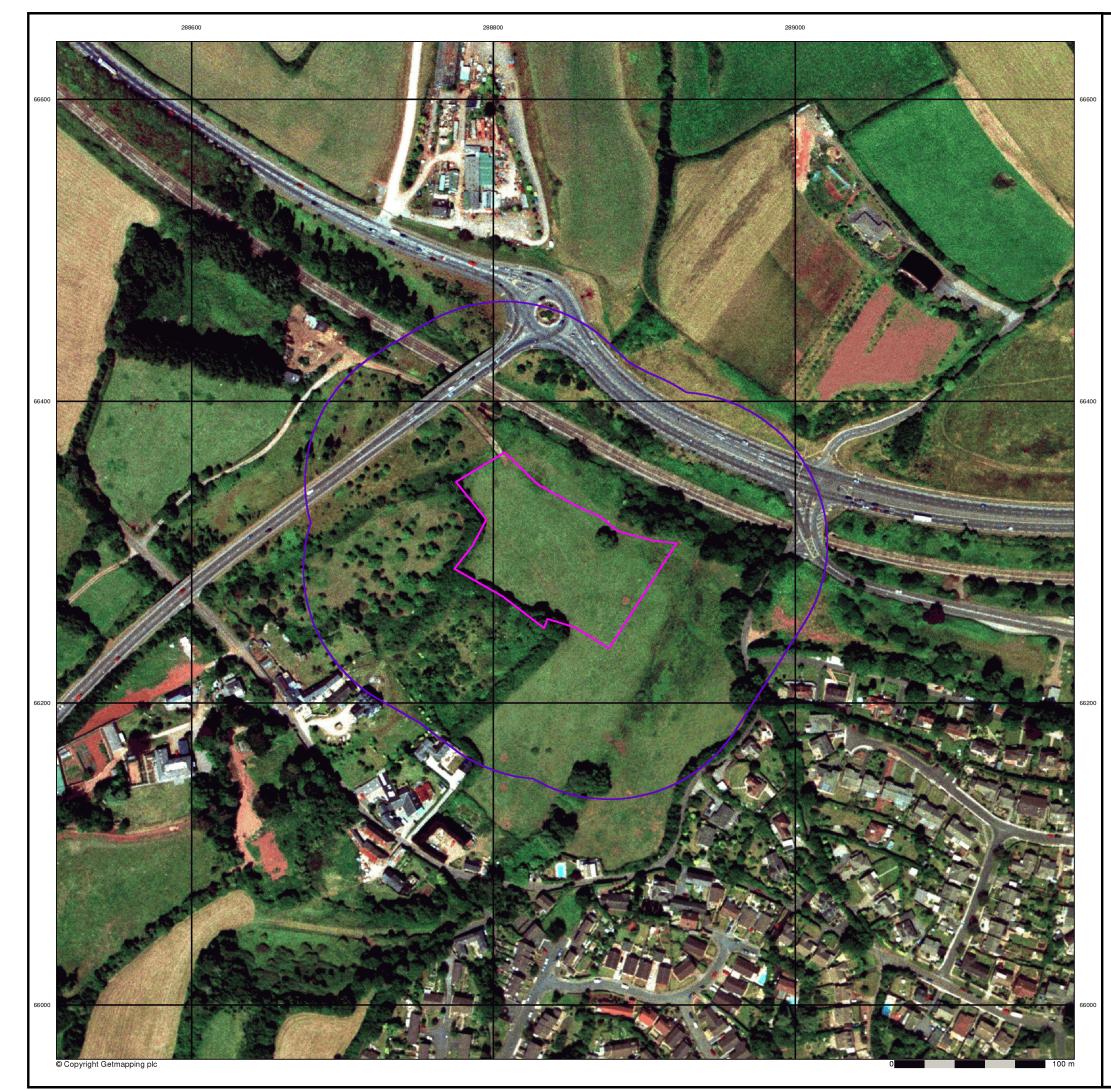
'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100


Site Details

Land at Edginswell, Torquay

0844 844 9952

Tel: Fax: Web:

Historical Aerial Photography Published 1999

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A13

A21	A22	SE SW NE NW	A23	SE SW NE NW		A25	
-A16	-A17		-A18		-A19-	A20-	
SE SW NE NW		SEISW NE NW		NESW		SE SW NE NW	N
-A11	-A12		- 413-		-A14-	A15-	
SE SW NE NW		SE SW NE NW		SE SW NE NW		SE SW NE NW	V
- · A6	- A7		- • <mark>4</mark> 8 - • i		- · Å9 –	A10-	
se sw Ne NW A1	A'2	SE SW NE NW	A3	SE SW NE NW	A4	se sw Nenw A5	

Order Details

Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	100

Site Details Land at Edginswell, Torquay

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

Historical Mapping Legends

Ordnance Survey County Series 1:10,560	Ordnance Survey Plan 1:10,000	1:10,000 Raster Mapping
Gravel Sand Other Pit Pit Pits	رمینیک Chalk Pit, Clay Pit ورونیک Gravel Pit کرین or Quarry	Gravel Pit Gravel Pit or slag heap
Orchard Quarry	Sand Pit	Rock Cock (scattered)
A Reeds Marsh	Refuse or Lake, Loch	ົ້ໍ້ຈັ Boulders ໍ Boulders (scattered)
	Dunes 500 Boulders	Shingle Mud Mud
Mixed Wood Deciduous Brushwood	ネネ Coniferous ふ	Sand Sand Sand Pit
		Slopes Transmith Top of cliff
	ி ் Orchard இந்_ Scrub \Υ்னு Coppice	General detail Underground detail
Fir Furze Rough Pasture	יזר Bracken איזענעי Heath איז	— — — — Overhead detail ++++++++++ Narrow gauge railway
Arrow denotes Arrow denotes Trigonometrical flow of water Station	عنين Marsh ۲۷٬۰٬ Reeds <u>عن</u> Saltings	Multi-track Single track railway railway Civil, parish c
- → Site of Antiquities	Direction of Flow of Water Building	County boundary County, parising (England only) community District, Unitary,
Pump, Guide Post, Well, Spring, Signal Post Boundary Post • 285 Surface Level	Sand Glasshouse	Metropolitan, Constituency London Borough boundary boundary
Sketched Instrumental	Pylon —— □ — — Electricity Transmission Pole Line	Area of wooded ↓ ↑ Area of wooded ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Main Roads Fenced Minor Roads Fenced	·	
Un-Fenced Un-Fenced	Cutting Embankment Standard Gauge	
Sunken Road Raised Road	Road '''∏''' Road Level Foot Single Track Under Over Crossing Bridge	수 수 Orchard 《 Coppice 수 수
Road over Railway River	Siding, Tramway or Mineral Line Narrow Gauge	்பிட Rough பிட்சு Heath
Railway over Level Crossing	Geographical County	∩Scrub _⊻∠Marsh, Salt _⊻∠Marsh or Ree
Road over River or Canal Stream	— — — — Administrative County, County Borough or County of City Municipal Borough, Urban or Rural District,	Water feature Flow arrows
Road over Stream	Burgh or District Council Borough, Burgh or County Constituency Shown only when not coincident with other boundaries	MHW(S) Mean high water (springs) Mean low water (springs)
————— County Boundary (Geographical)	— — — — Civil Parish Shown alternately when coincidence of boundaries occurs	Telephone line Electricity (where shown) (with poles)
County & Civil Parish Boundary	BP, BS Boundary Post or Stone Pol Sta Police Station	(with poles) ← Bench mark _ Triangulation
+ · + · + · + · + Administrative County & Civil Parish Boundary County Borough Boundary (England)	Ch Church PO Post Office CH Club House PC Public Convenience	Point feature Pylon flare s
	F E Sta Fire Engine Station PH Public House FB Foot Bridge SB Signal Box – – – – –	 (e.g. Guide Post ⊠ or lighting tov or Mile Stone)
Co. Boro. Bdy.		
	Fn Fountain Spr Spring GP Guide Post TCB Telephone Call Box MP Mile Post TCP Telephone Call Post	•‡• Site of (antiquity) Glasshouse

ping

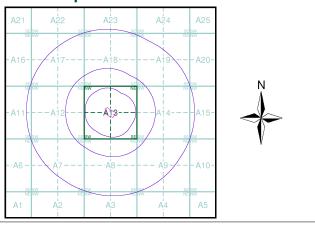
Underground detail Narrow gauge railway Single track railway Civil, parish or community boundary Constituency boundary

Non-coniferous

Marsh, Salt Marsh or Reeds

Mean low water (springs)

Electricity transmission line (with poles) Triangulation


Pylon, flare stack or lighting tower

soiltechnics environmental and geotechnical consultants

Historical Mapping & Photography included:

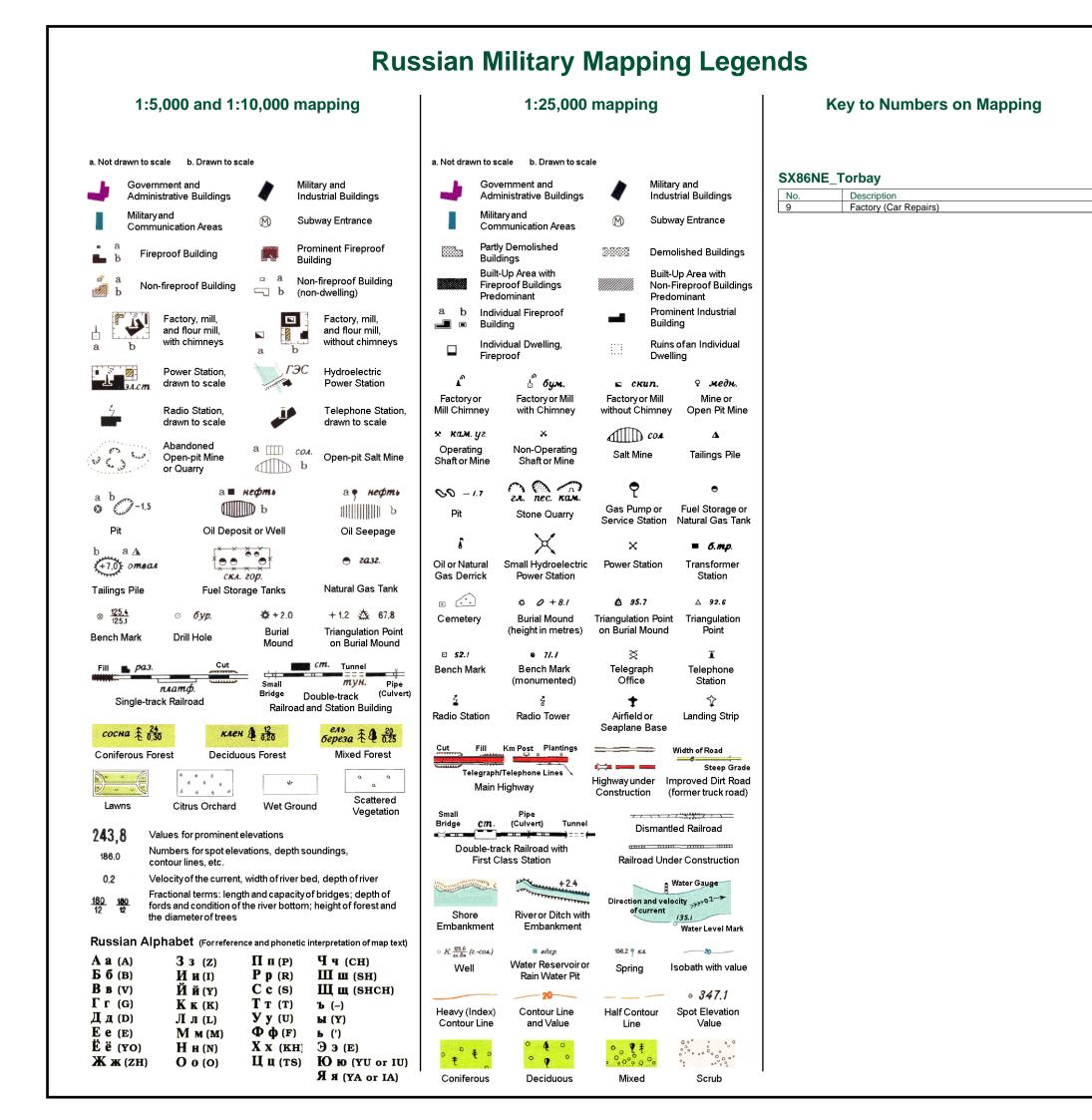
Mapping Type	Scale	Date	Pg
Devon	1:10,560	1869 - 1887	3
Devon	1:10,560	1889	4
Devon	1:10,560	1906	5
Devon	1:10,560	1933 - 1935	6
Devon	1:10,560	1938 - 1939	7
Ordnance Survey Plan	1:10,000	1963 - 1964	8
Ordnance Survey Plan	1:10,000	1968	9
Torbay	1:10,000	1976	10
Ordnance Survey Plan	1:10,000	1978	11
Ordnance Survey Plan	1:10,000	1981	12
Ordnance Survey Plan	1:10,000	1990 - 1991	13
Ordnance Survey Plan	1:10,000	1993	14
10K Raster Mapping	1:10,000	1999	15
10K Raster Mapping	1:10,000	2006	16
VectorMap Local	1:10,000	2017	17

Historical Map - Slice A

Order Details

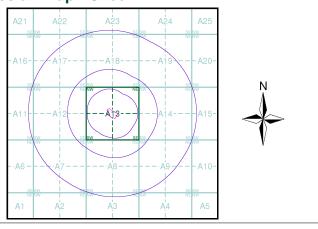
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details


Land at Edginswell, Torquay

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 30-Nov-2017 Page 1 of 17


Tel: Fax: Web:

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Devon	1:10,560	1869 - 1887	3
Devon	1:10,560	1889	4
Devon	1:10,560	1906	5
Devon	1:10,560	1933 - 1935	6
Devon	1:10,560	1938 - 1939	7
Ordnance Survey Plan	1:10,000	1963 - 1964	8
Ordnance Survey Plan	1:10,000	1968	9
Torbay	1:10,000	1976	10
Ordnance Survey Plan	1:10,000	1978	11
Ordnance Survey Plan	1:10,000	1981	12
Ordnance Survey Plan	1:10,000	1990 - 1991	13
Ordnance Survey Plan	1:10,000	1993	14
10K Raster Mapping	1:10,000	1999	15
10K Raster Mapping	1:10,000	2006	16
VectorMap Local	1:10,000	2017	17

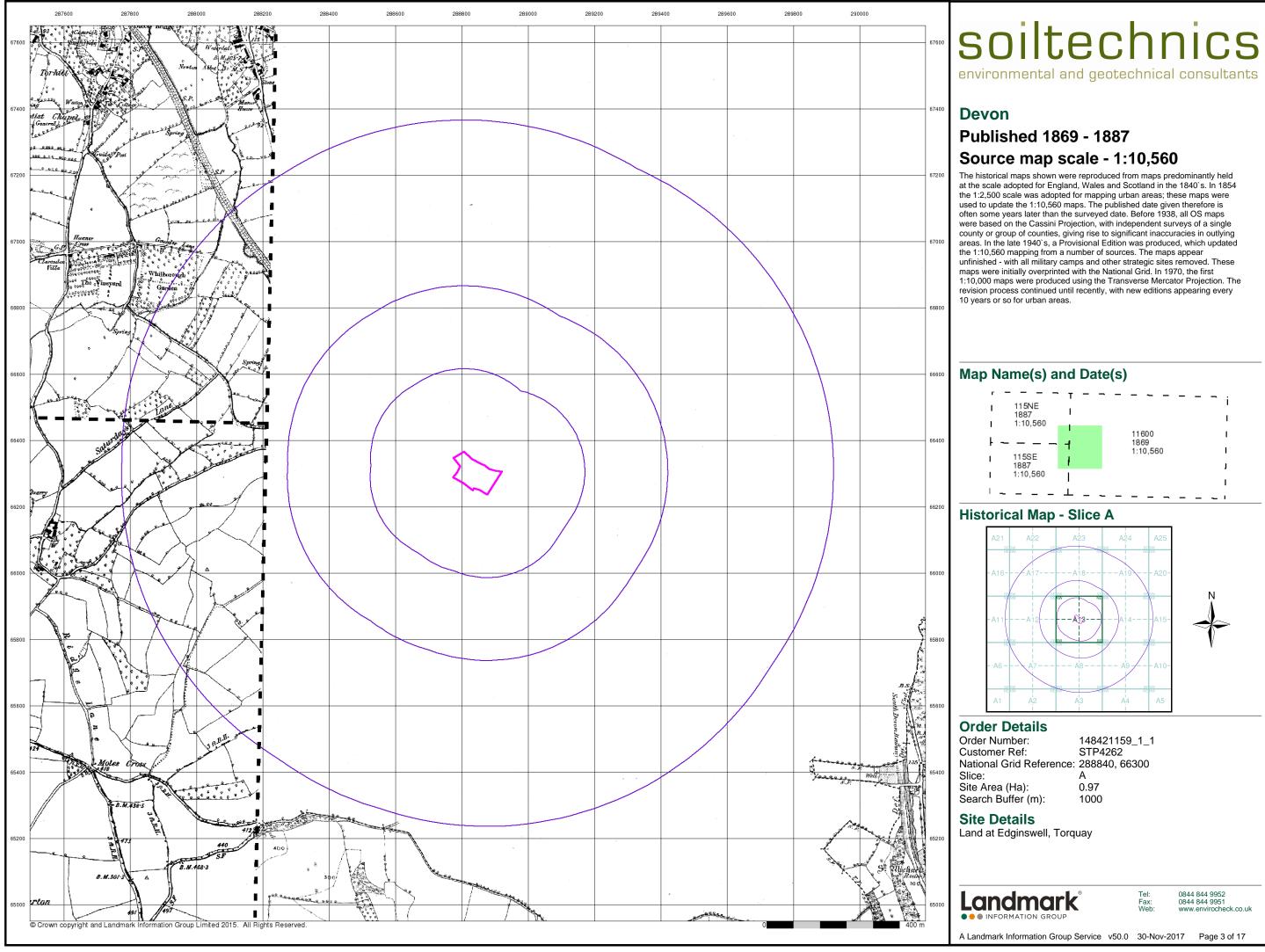
Russian Map - Slice A

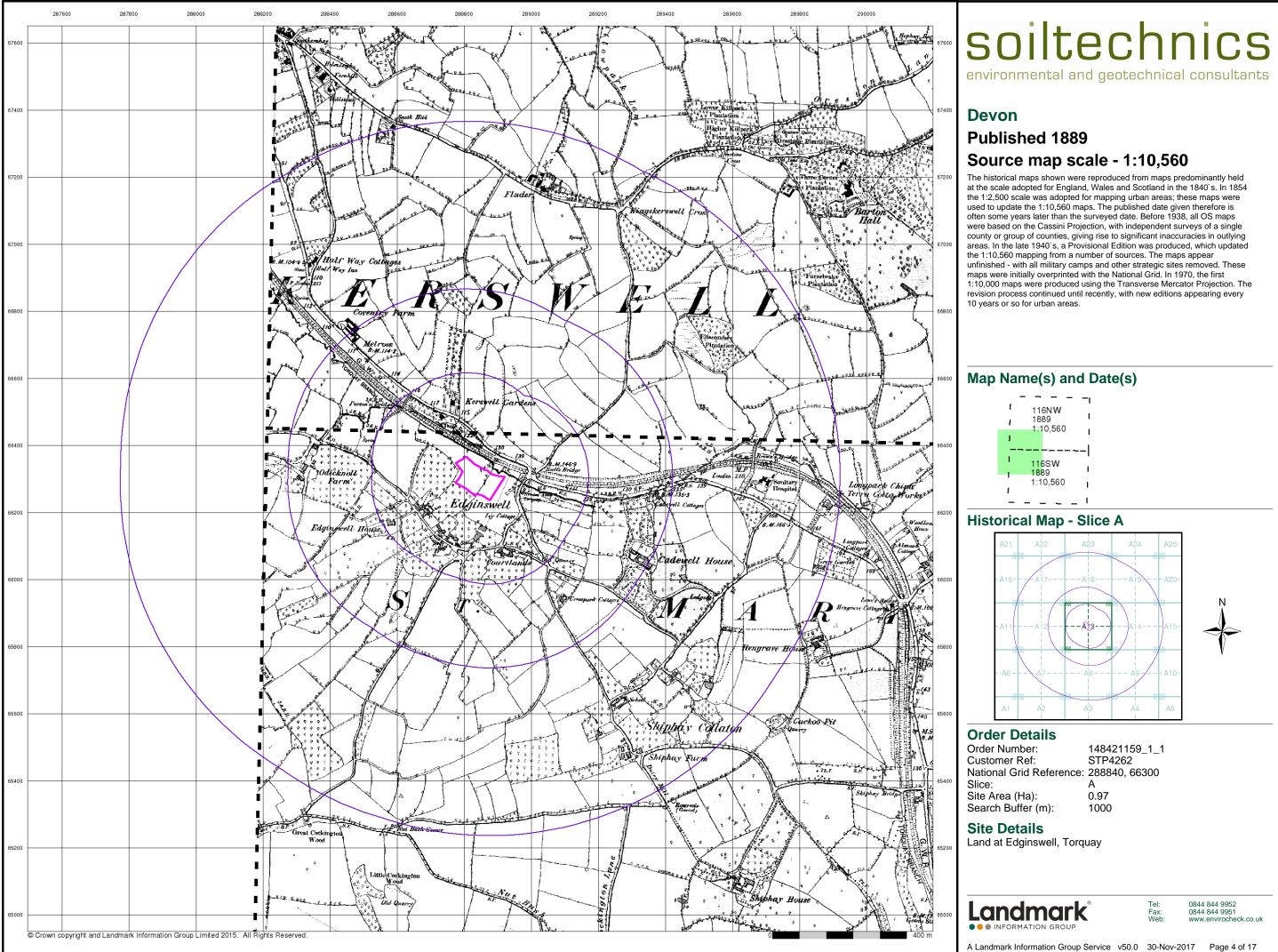
Order Details

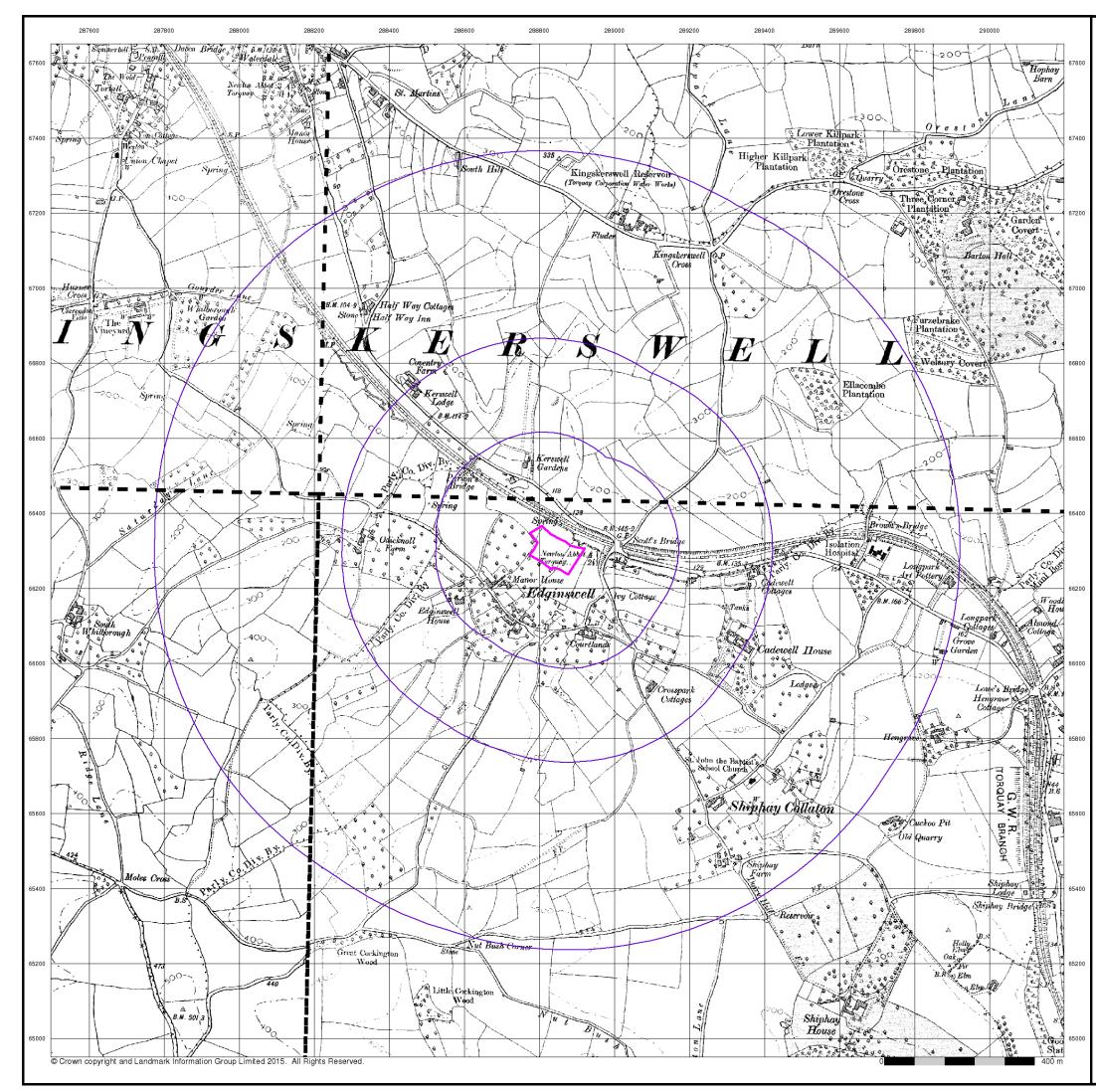
148421159_1_1
STP4262
288840, 66300
A
0.97
1000

Site Details

Land at Edginswell, Torquay

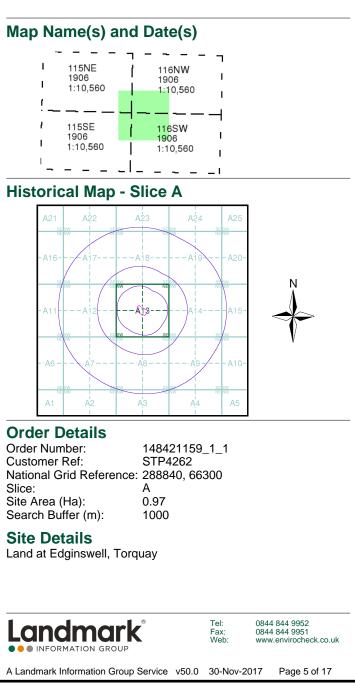


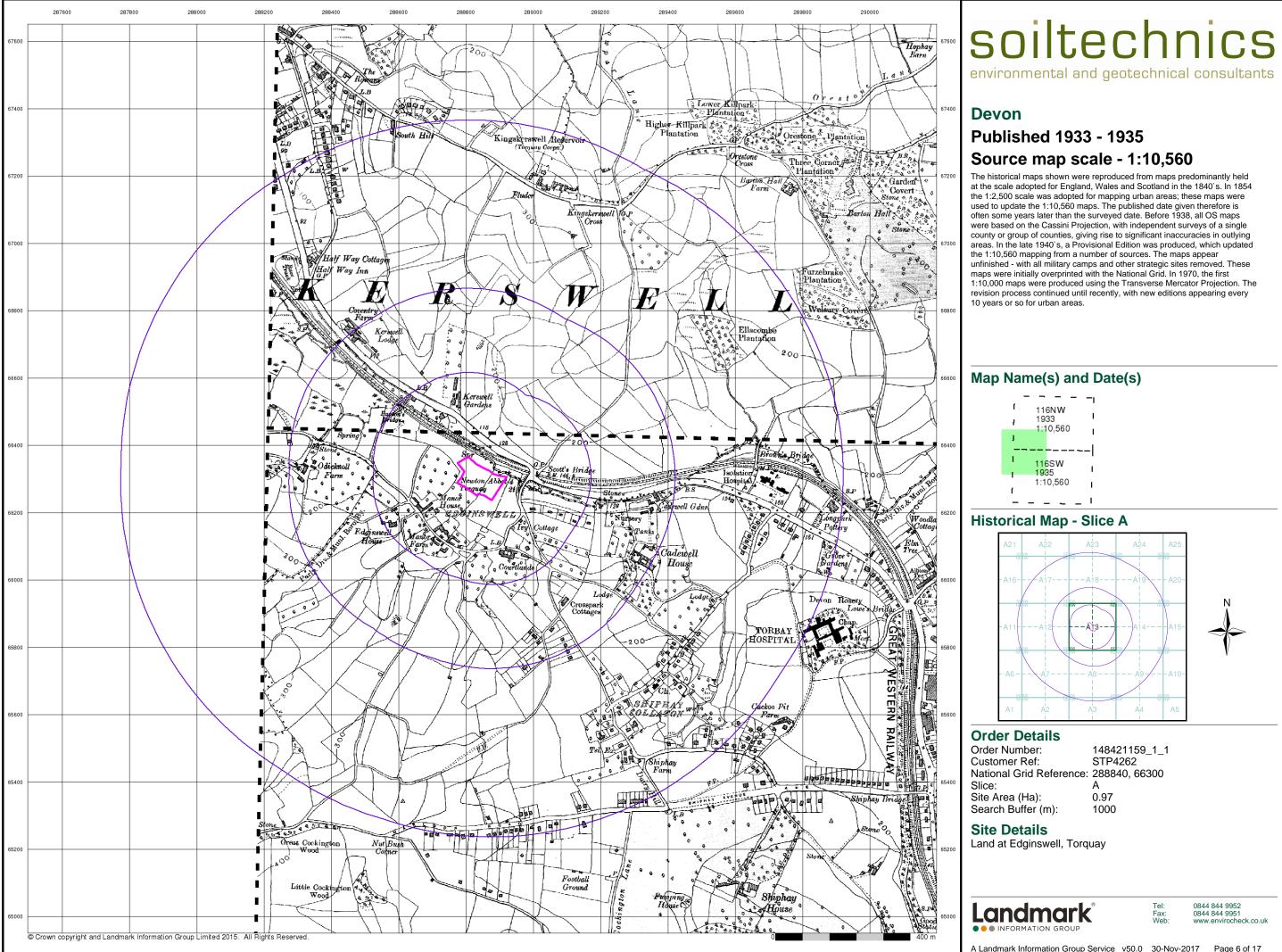


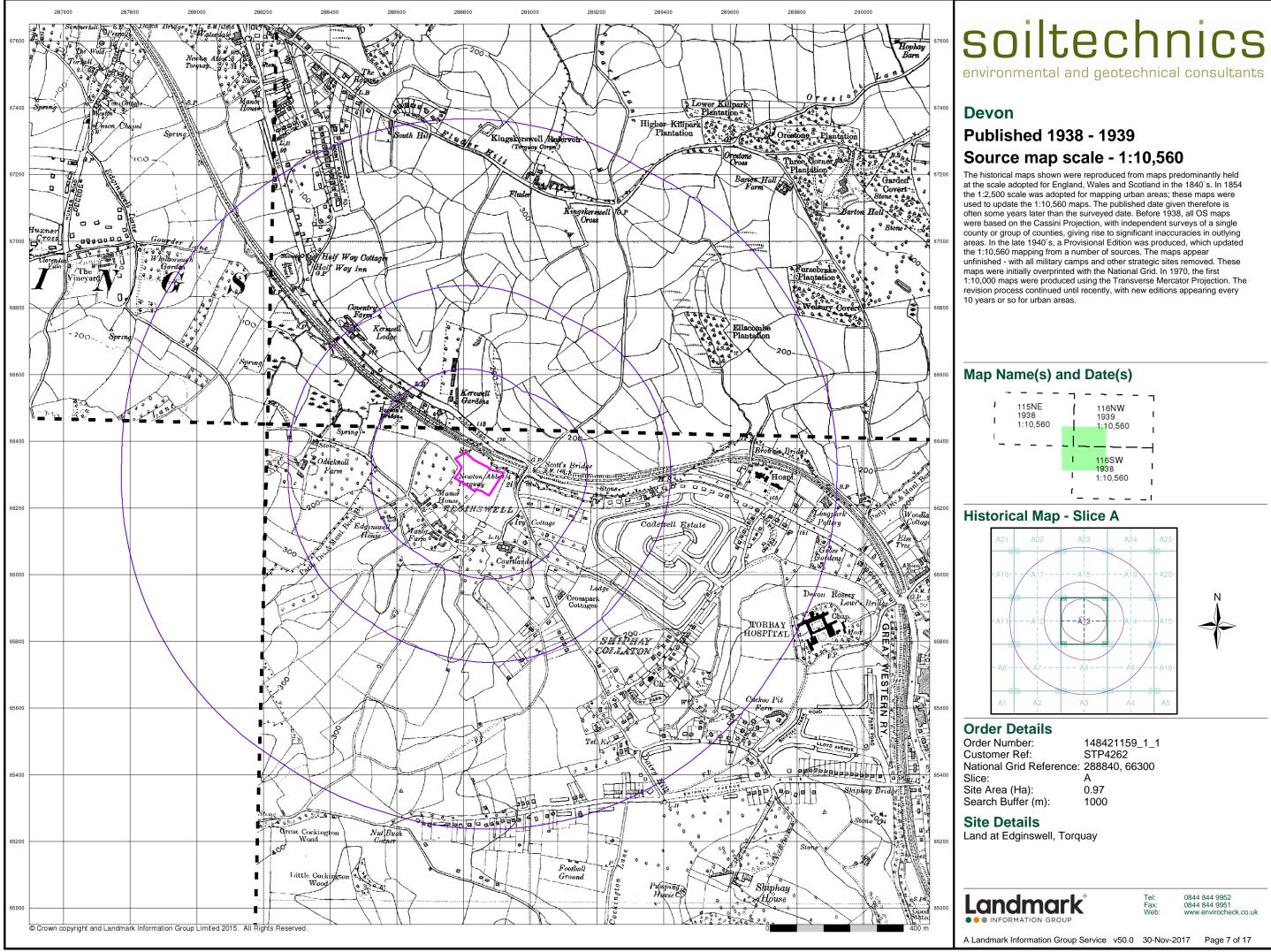

www.envirocheck.co.uk

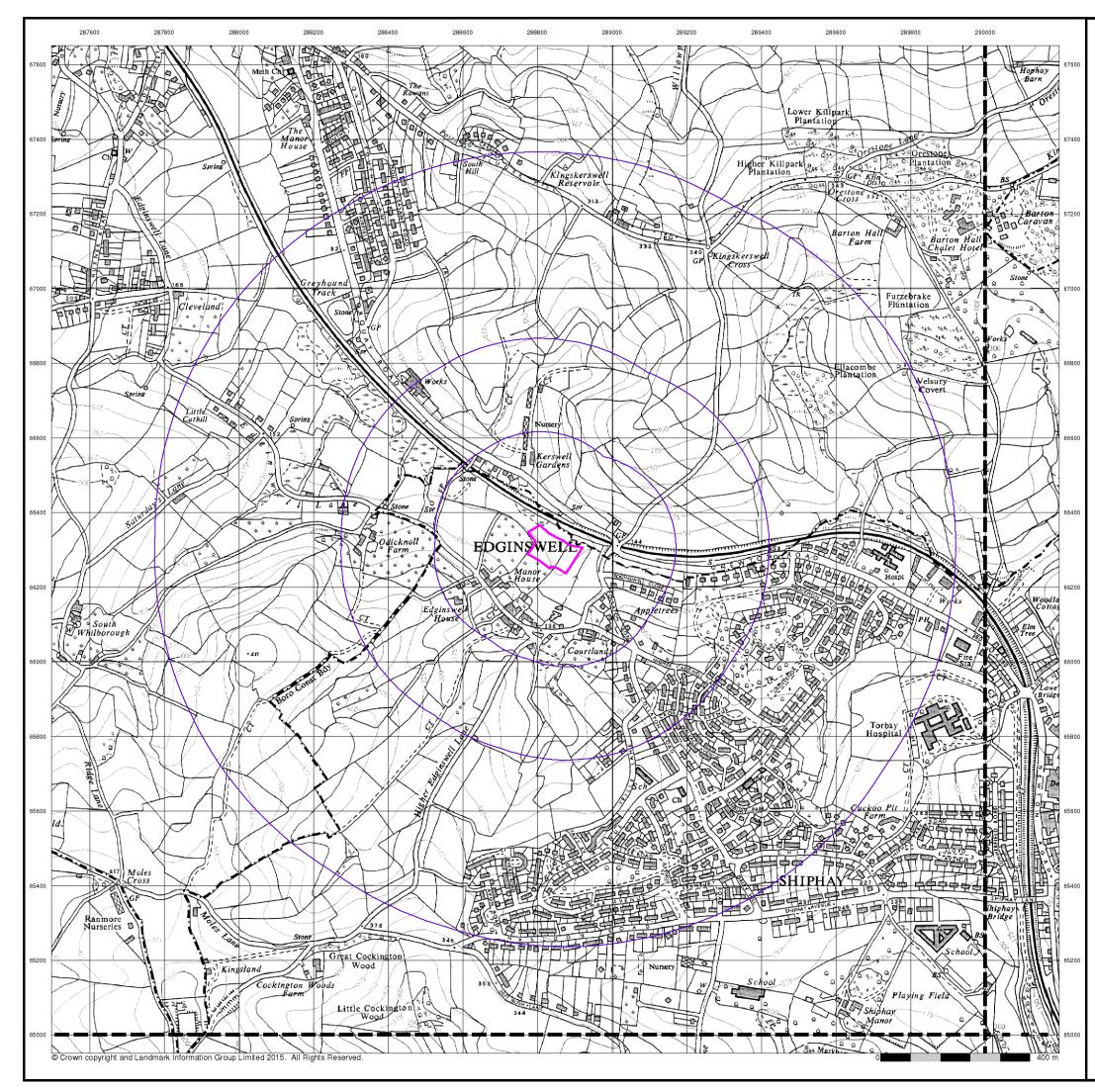
Tel

Fax: Web

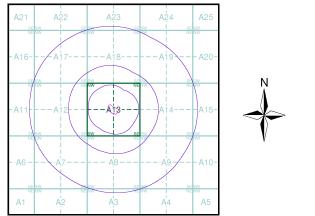







Devon Published 1906 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced until recently, with new editions appearing every 10 years or so for urban areas.


Ordnance Survey Plan Published 1963 - 1964 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

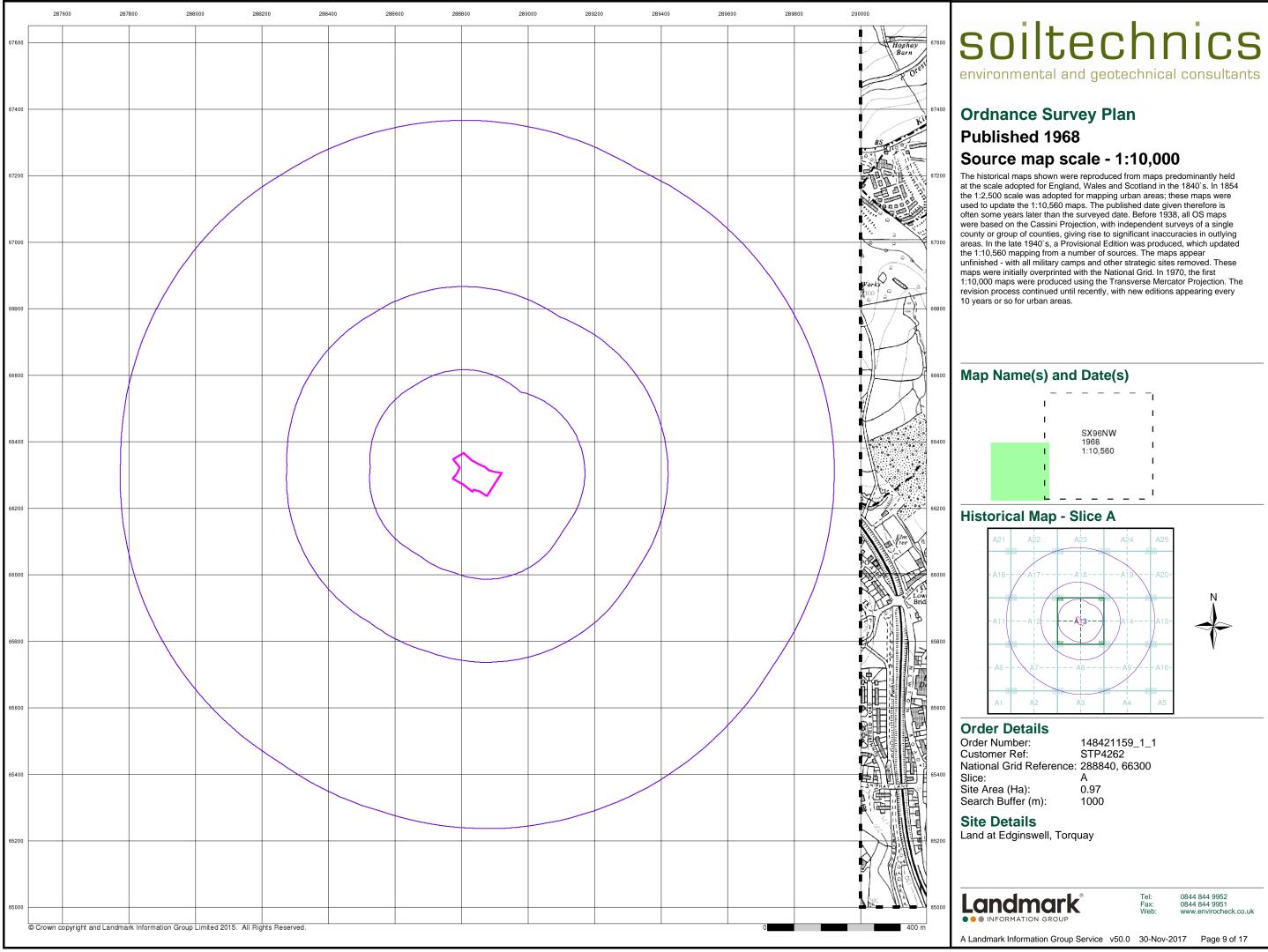
_	_	_		—	_	_
I	SX8	6NE	Т	SX96	SNW	I
I	1964 1:10		1	1963	560	I
I			1			I
-	-	_		—	—	_
	_ SX8	- 6SE	1	_ SX96	– sw	- I
 		3	 			-

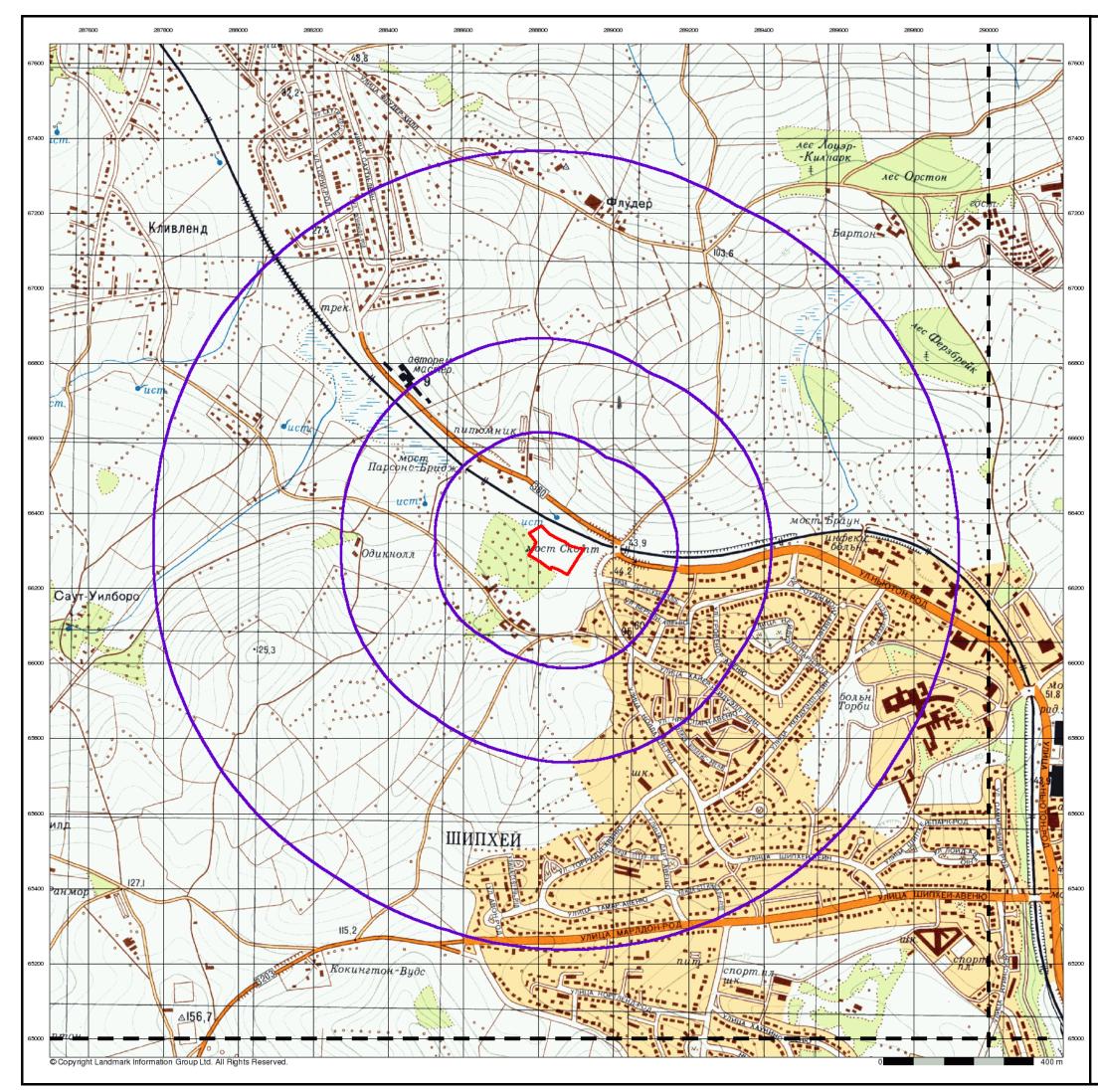
Historical Map - Slice A

Order Details

Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details

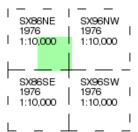

Land at Edginswell, Torquay



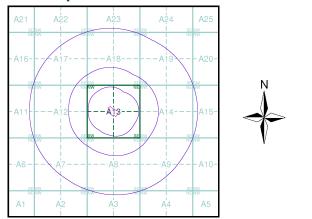
0844 844 9952

Tel:

Fax: Web:


Torbay Published 1976

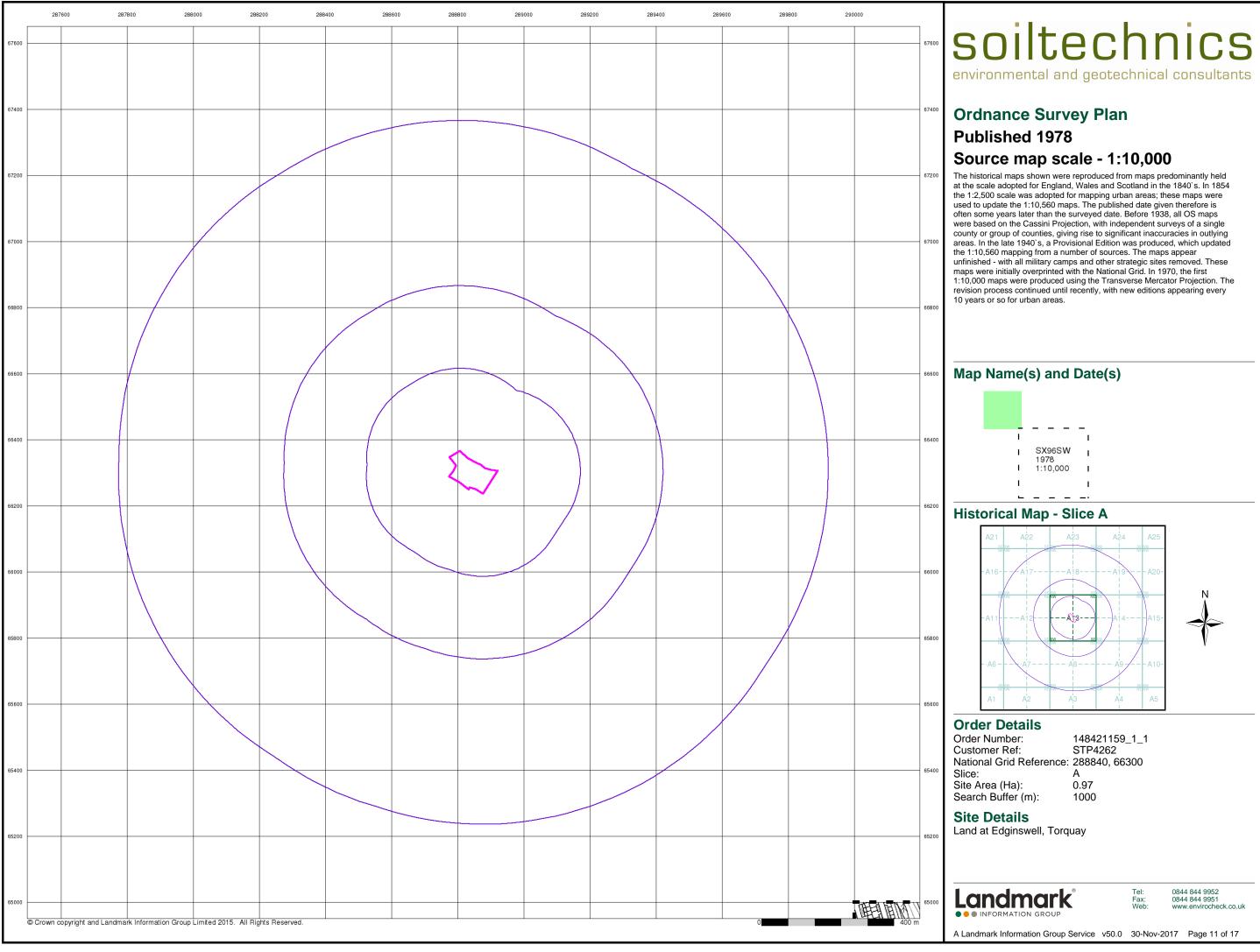
Source map scale - 1:10,000

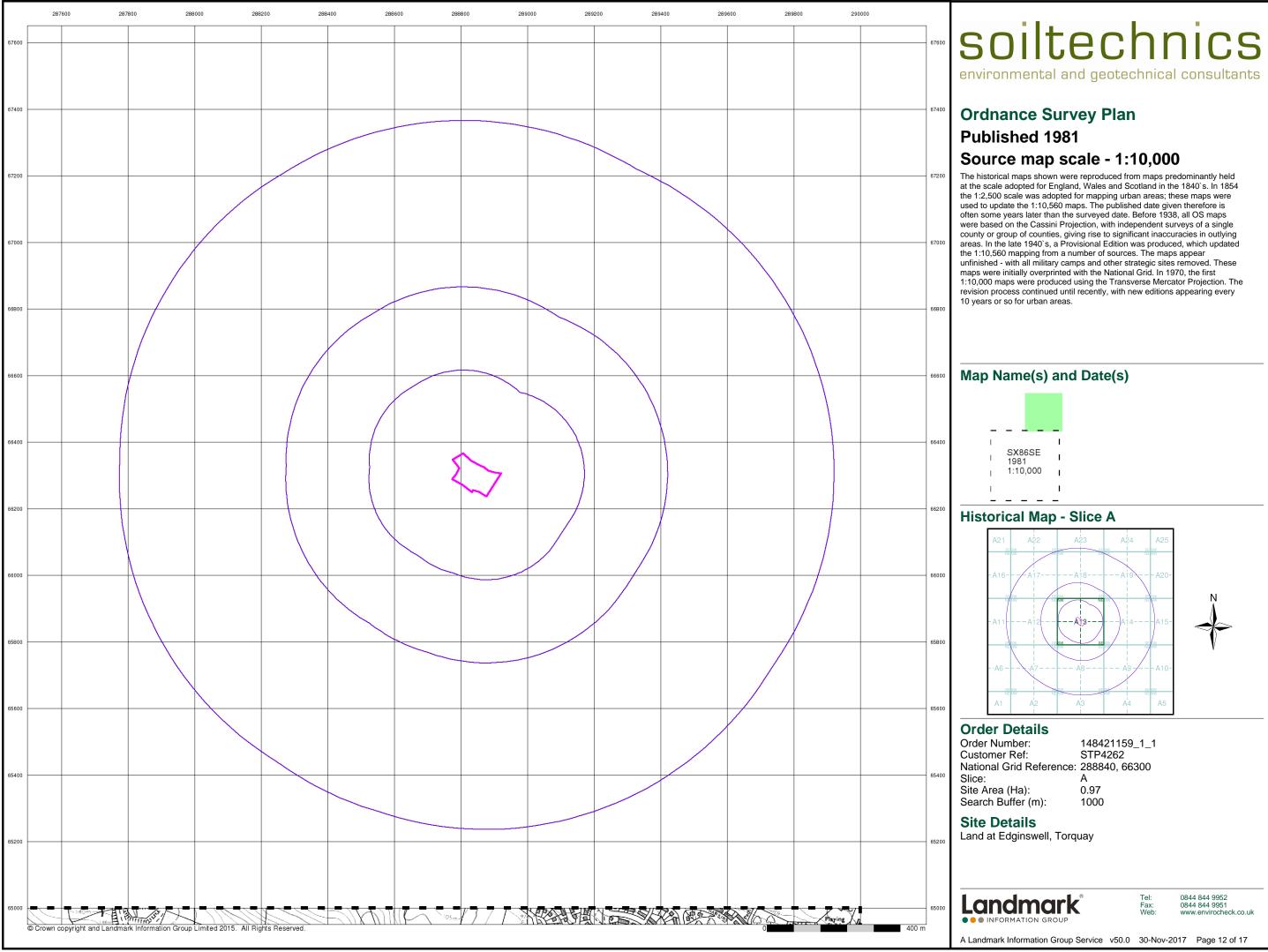

These maps were produced by the Russian military during the Cold War between 1950 and 1997, and cover 103 towns and cities throughout the U.K. The maps are produced at 1:25,000, 1:10,000 and 1:5,000 scale, and show detailed land use, with colour-coded areas for development, green areas, and non-developed areas. Buildings are coloured black and important building uses (such as hospitals, post offices, factories etc.) are numbered, with a numbered key describing their use.

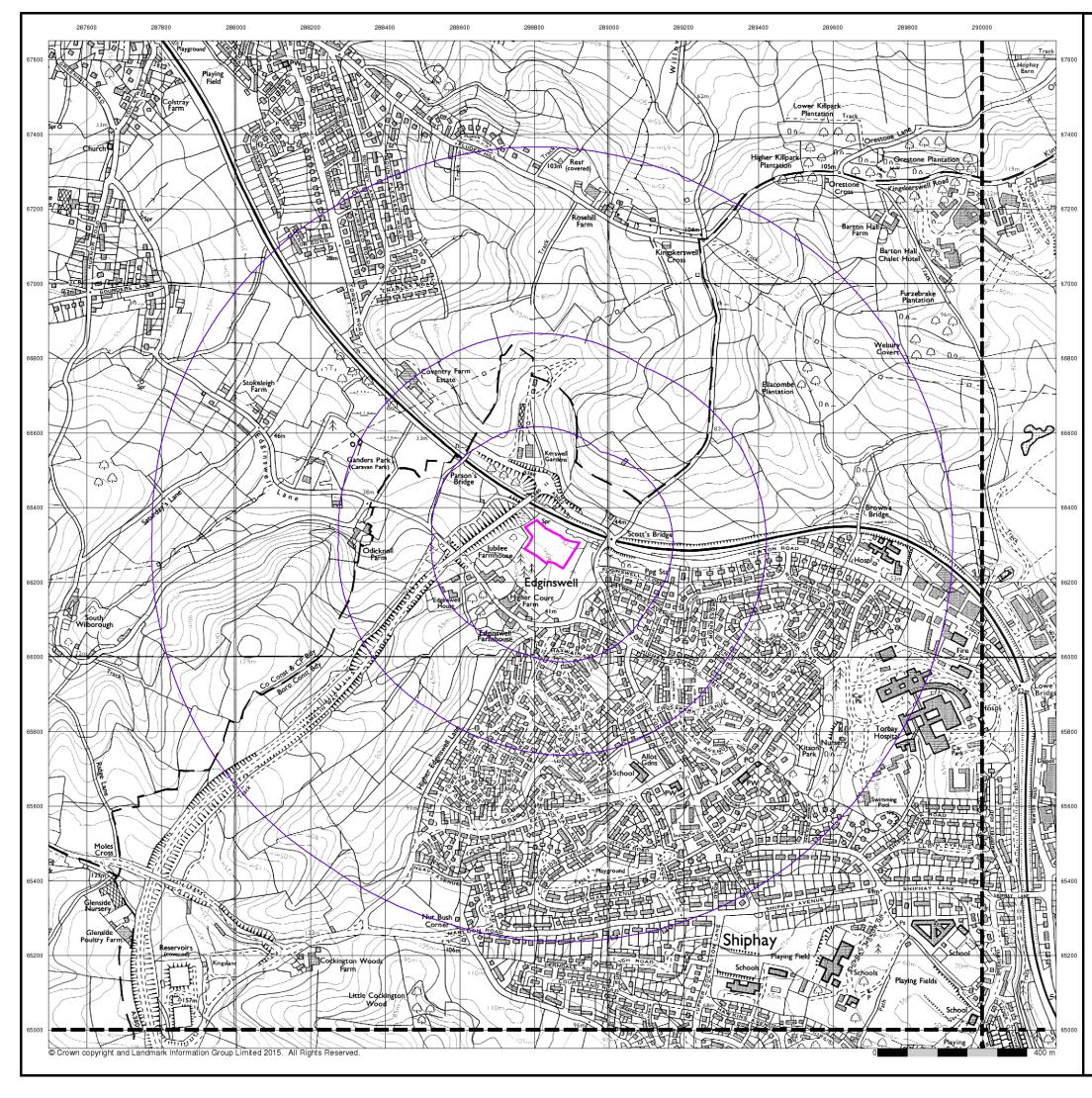
numbered key describing their use. They were produced by the Russians for the benefit of navigation, as well as strategic military sites and transport hubs, for use if they were to have invaded the U.K. The detailed information provided indicates that the areas were surveyed using land-based personnel, on the ground, in the cities that are mapped.

Map Name(s) and Date(s)

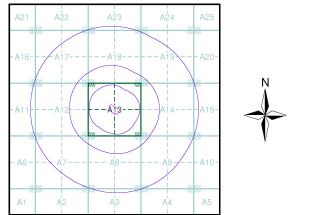
Russian Map - Slice A


Order Details


148421159_1_1
STP4262
288840, 66300
A
0.97
1000


Site Details

Land at Edginswell, Torquay


Ordnance Survey Plan Published 1990 - 1991 Source map scale - 1:10,000

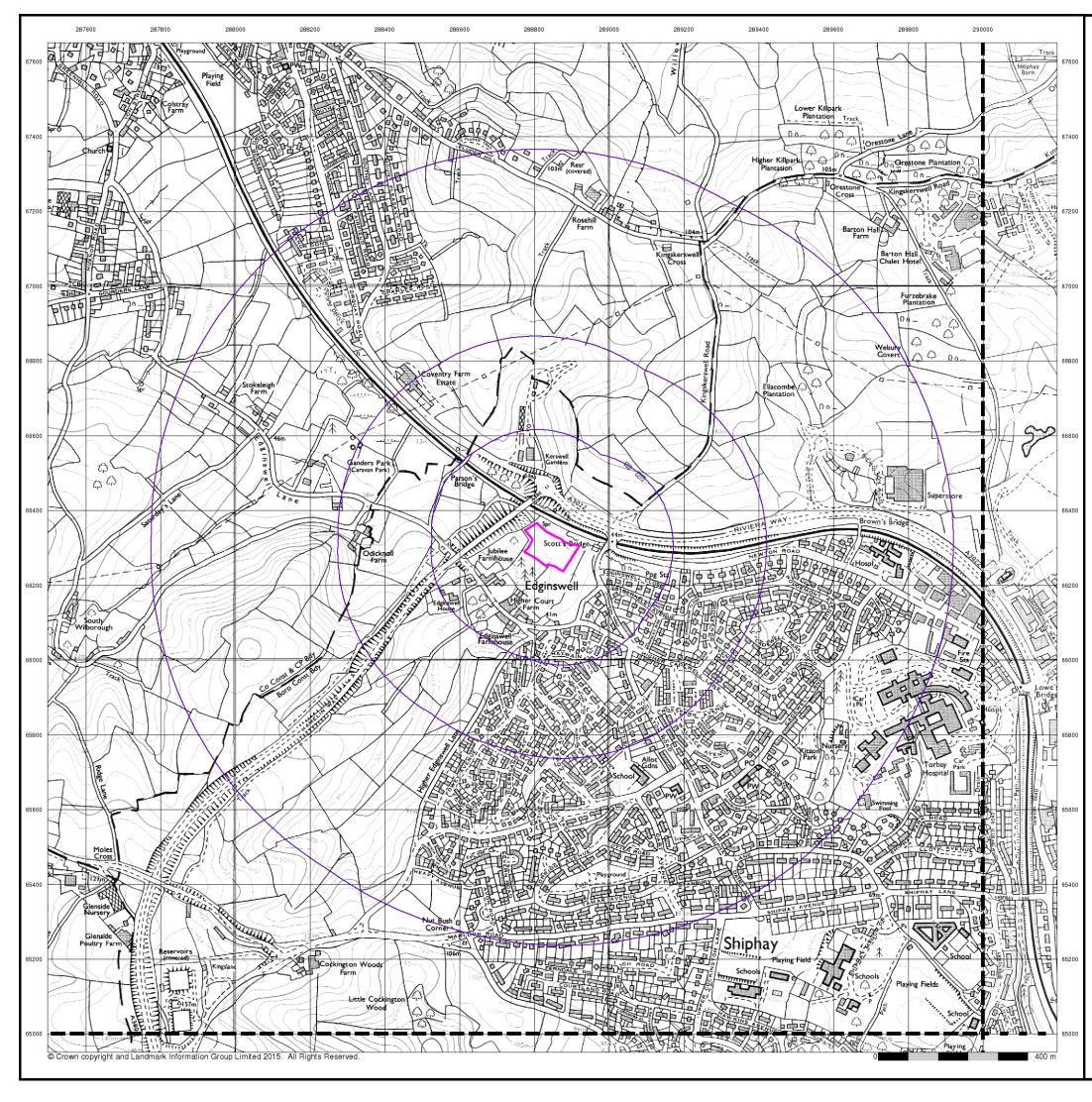
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

_	_	_		—	_	_
I	SX8	6NE	Т	SX96	SNW	Т
I	1991 1:10			1990 1:10.		I
I		,	1			Т
-	_	_		—	—	_
	_ SX8	- 6SE	 I	_ SX96	– ssw	- I
)	 			- 1 1

Historical Map - Slice A

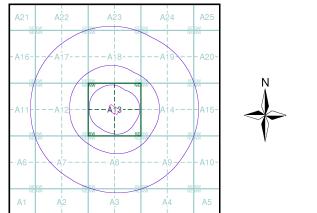
Order Details


Order Number: Customer Ref:	148421159_1_1 STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details

Land at Edginswell, Torquay

Ordnance Survey Plan Published 1993


Source map scale - 1:10,000

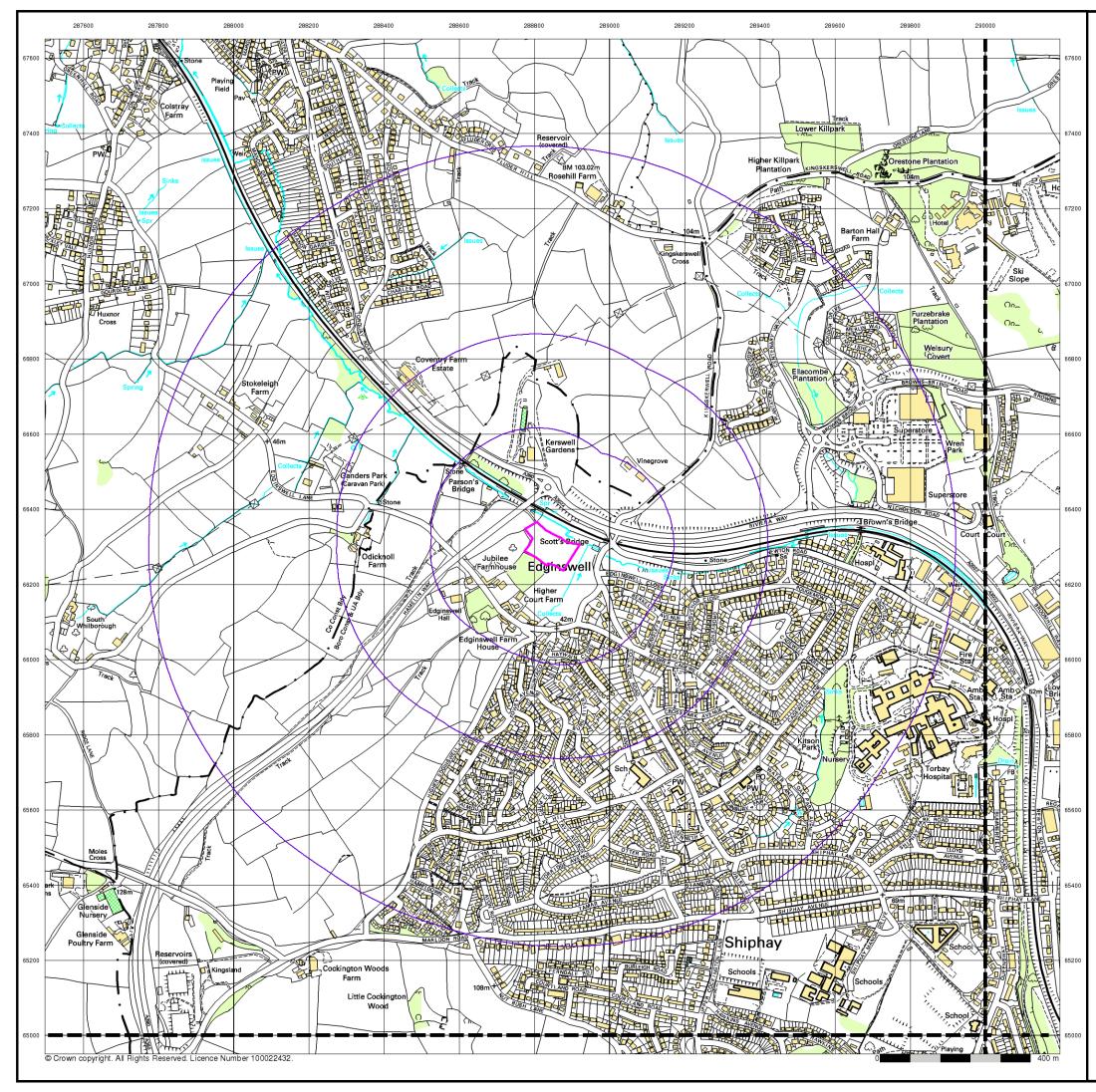
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

SX86NE SX96NW 1993 1:10,000 1:10,000 1:10,000 1:10,000 1:10,000 1:10,000

Historical Map - Slice A

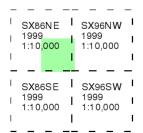
Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

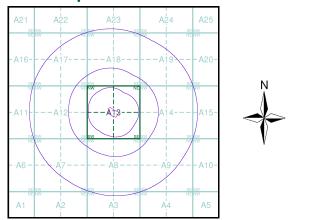
Site Details

Land at Edginswell, Torquay

Tel: Fax: Web:



10k Raster Mapping Published 1999


Source map scale - 1:10,000

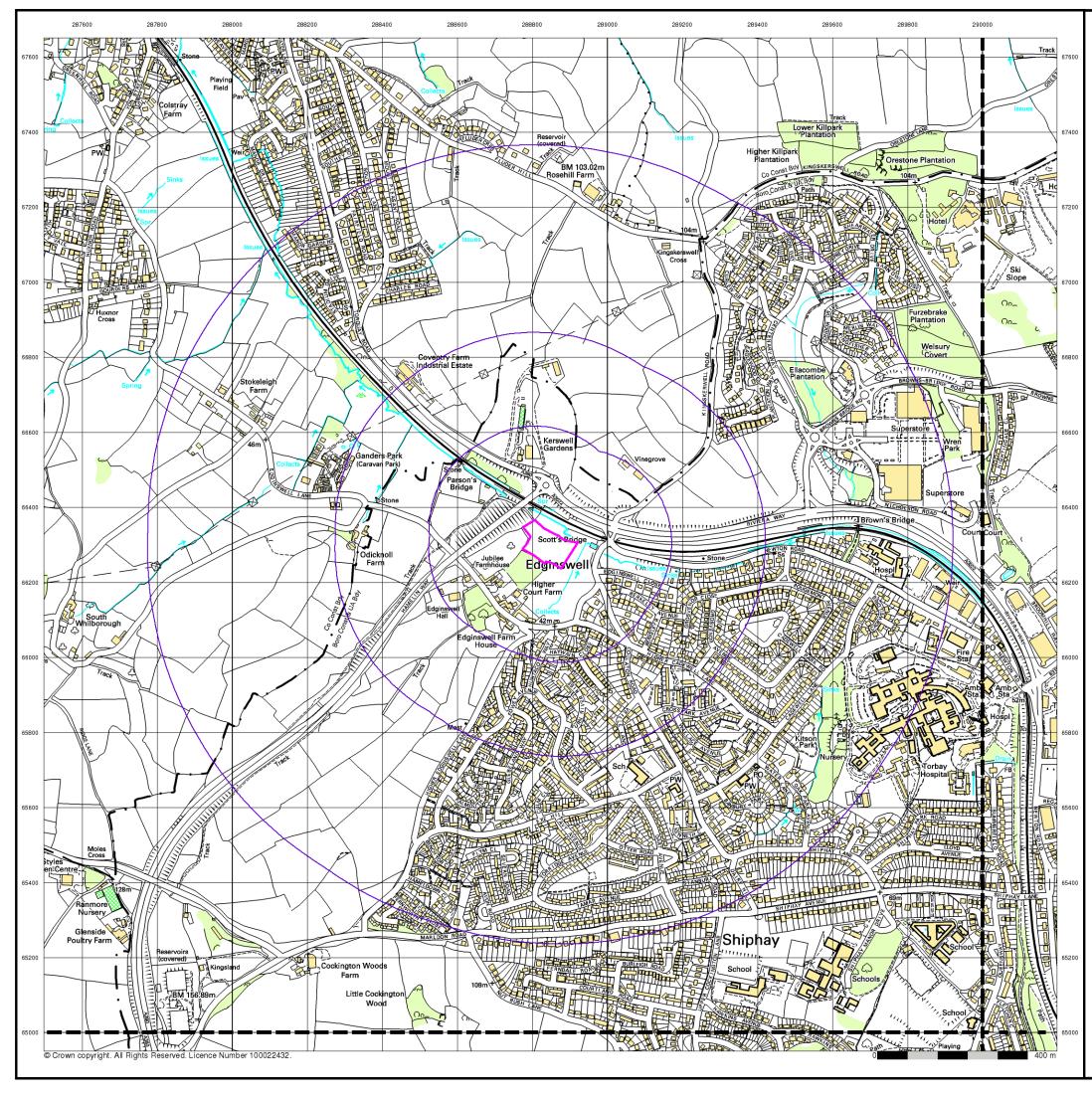
The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

Historical Map - Slice A

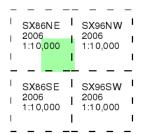
Order Details

Order Number:	148421159 1 1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	Α
Site Area (Ha):	0.97
Search Buffer (m):	1000

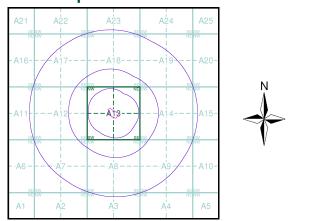

Site Details

Land at Edginswell, Torquay

Tel:



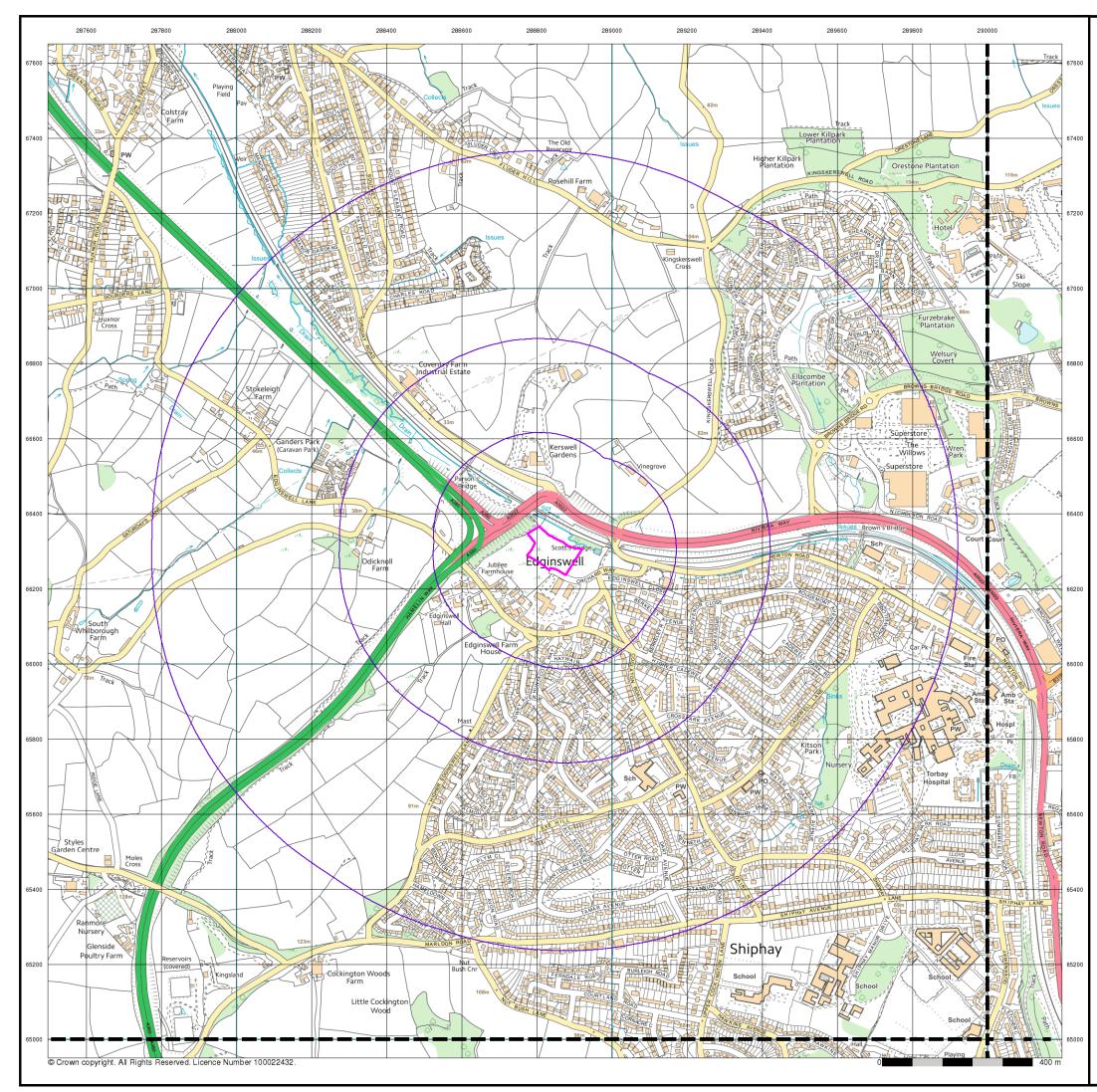
10k Raster Mapping Published 2006


Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

Historical Map - Slice A


Order Details

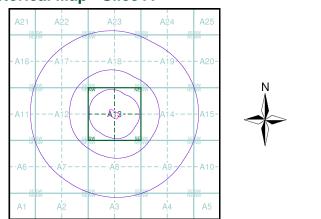
Order Number:	148421159 1 1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	Α
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details

Land at Edginswell, Torquay

VectorMap Local Published 2017 Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and river estuary areas).


Map Name(s) and Date(s)

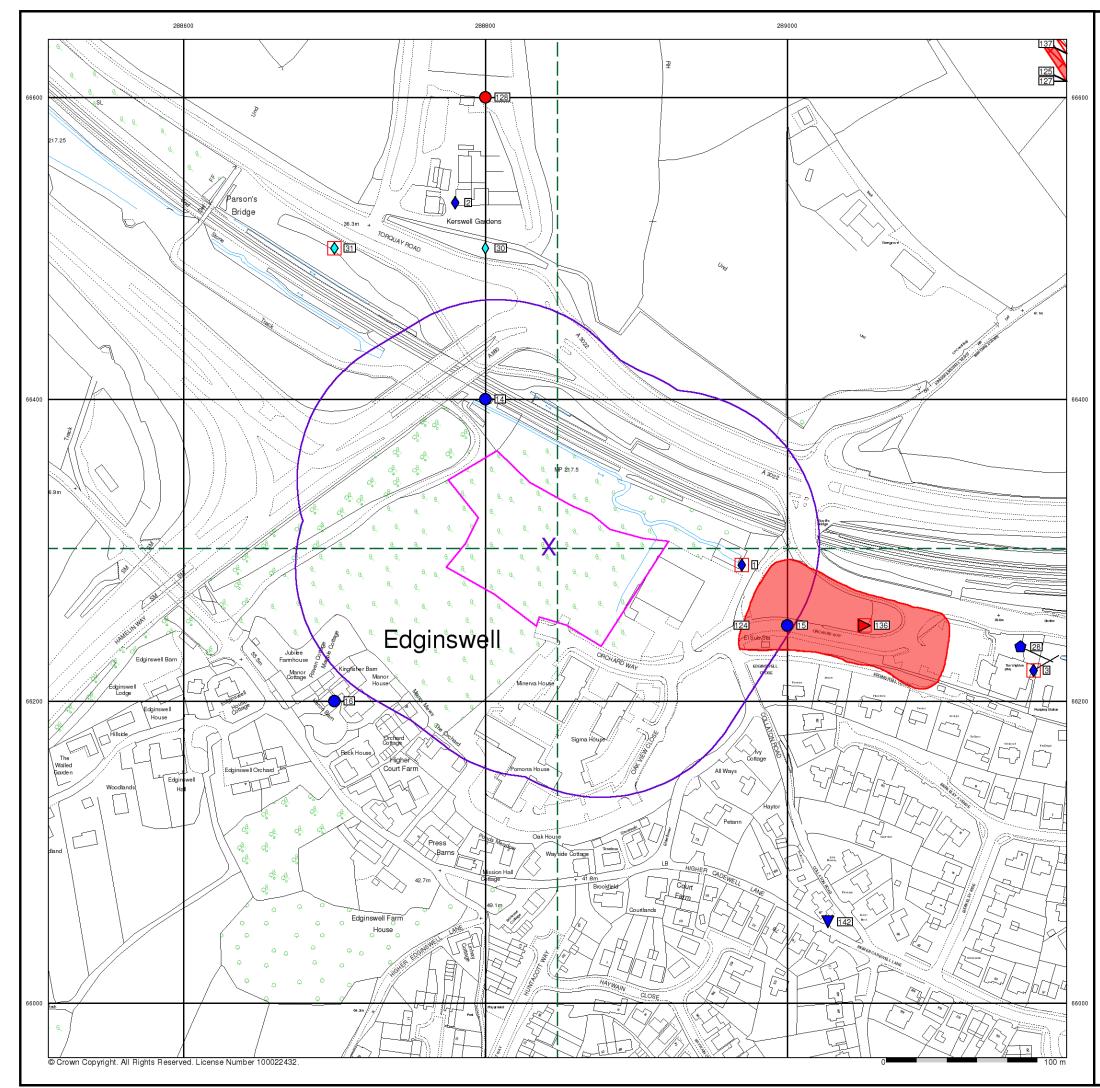
·	
SX86NE	I _{SX96NW} I
2017 Variable	Variable
	I I
	 I _{SX96SW} I
SX86SE 2017 Variable	I SX96SW I 2017 I Variable

Historical Map - Slice A

__ _ _

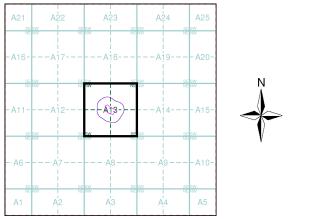
_ _ _

Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details

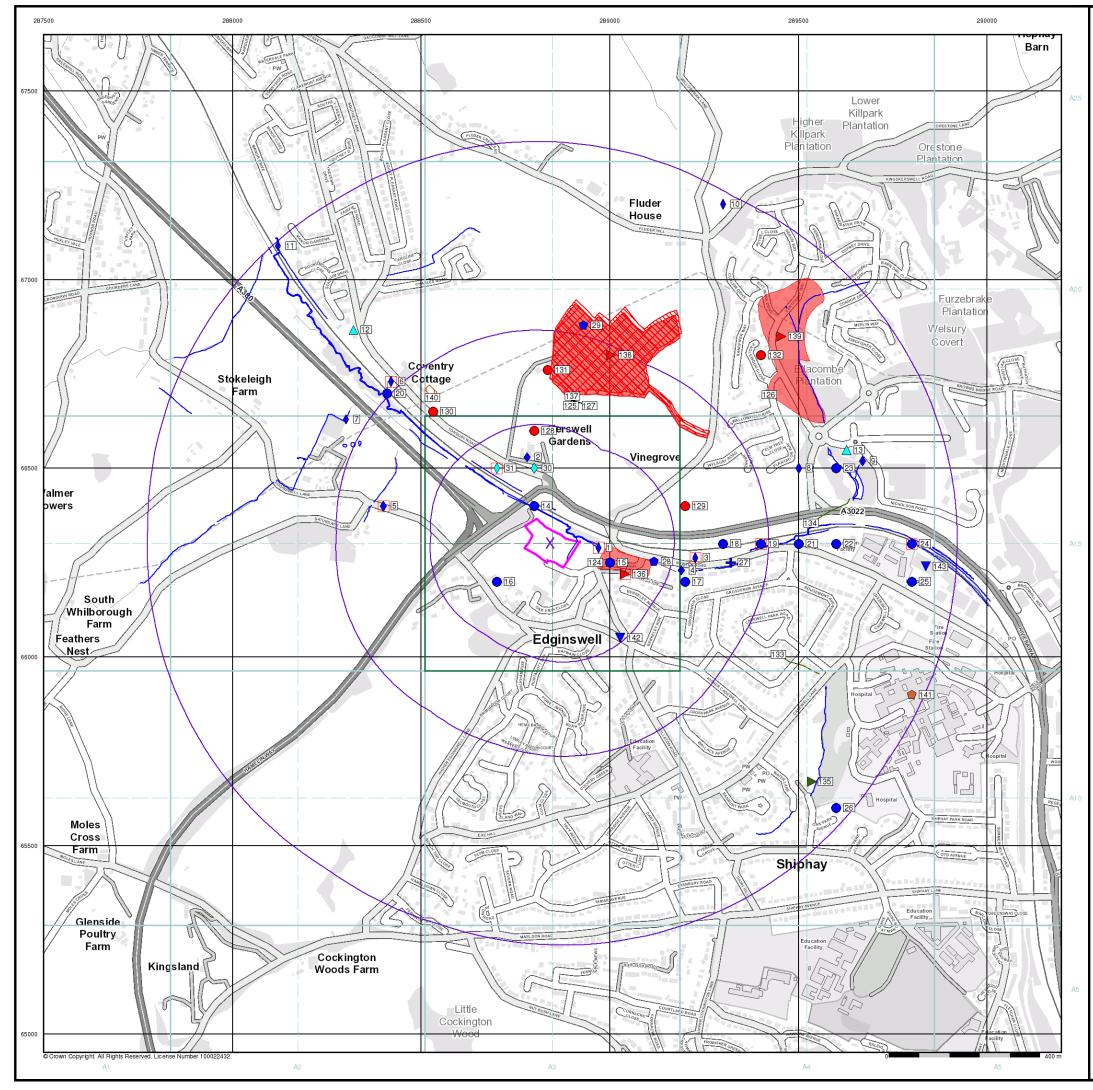
Land at Edginswell, Torquay


Tel: Fax: Web:

General

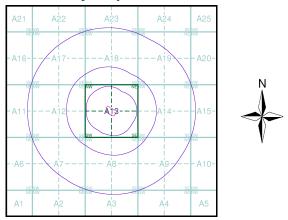
Site Sensitivity Map - Segment A13

Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Plot Buffer (m):	100

Site Details

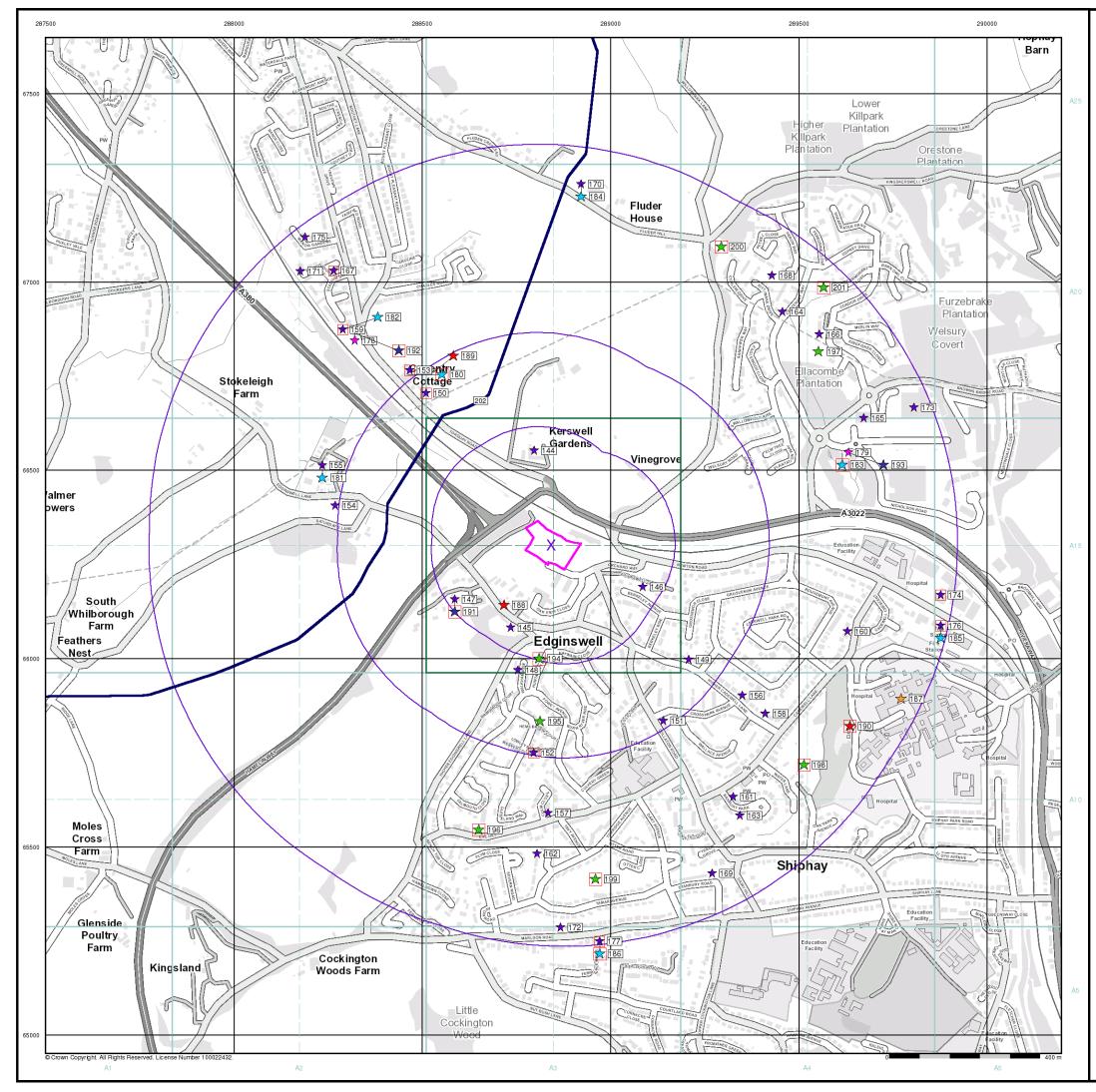
Land at Edginswell, Torquay


Tel: Fax: Web:

General

Site Sensitivity Map - Slice A

Order Details


Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details

Land at Edginswell, Torquay

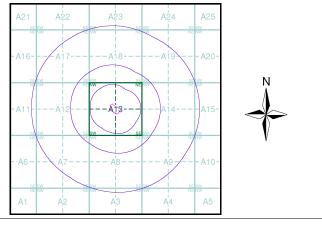
Tel: Fax: Web:

Industrial Land Use Map

General

Map ID

8


iecilied Bullen

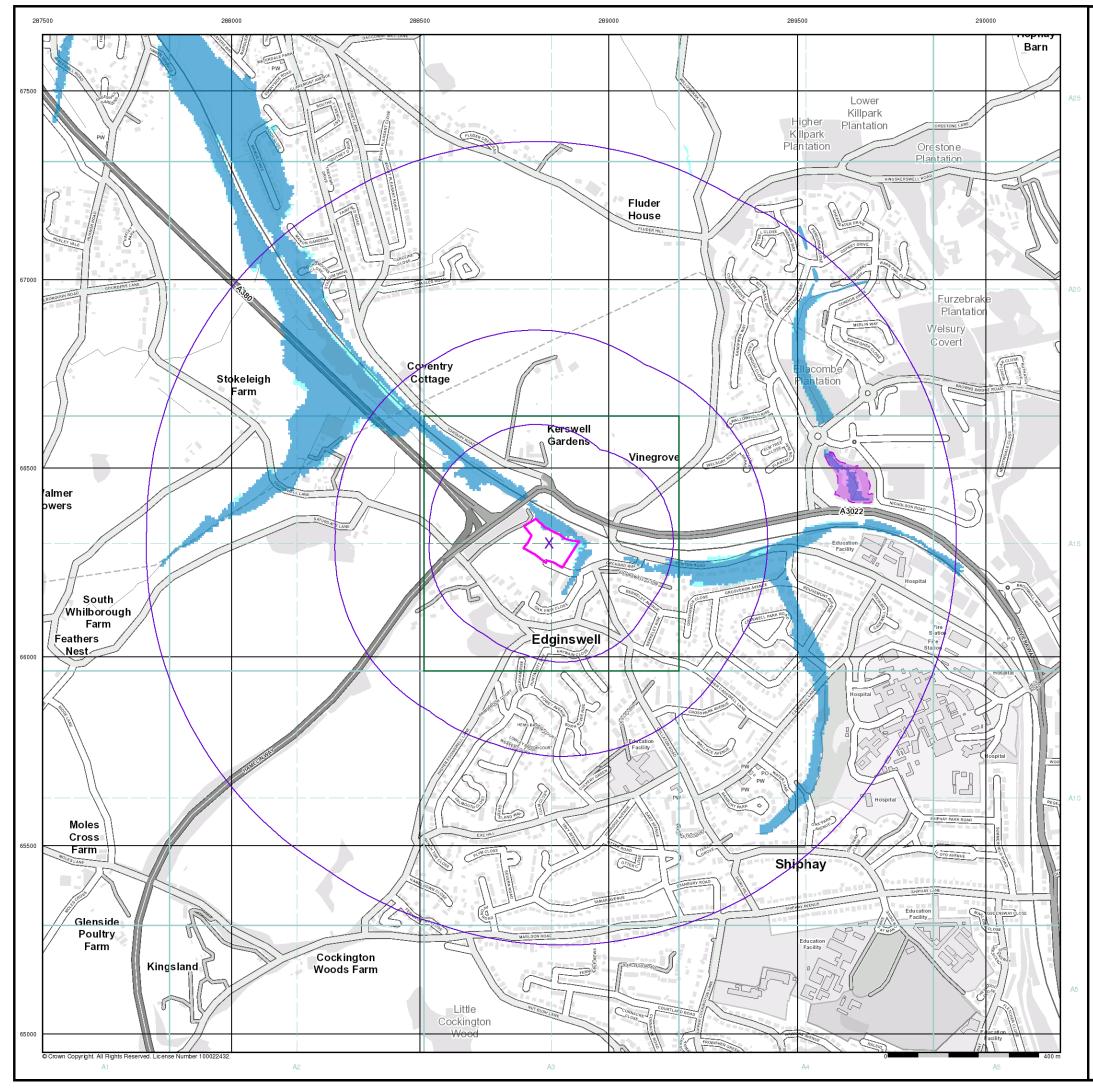
Specified Site
Specified Buffer(s)
Specified Site

Industrial Land Use

- ★ Contemporary Trade Directory Entry
- 🛨 Fuel Station Entry
- 🛰 Gas Pipeline
- 🖕 Points of Interest Commercial Services
- 🔆 Points of Interest Education and Health
- ★ Points of Interest Manufacturing and Production
- 🜟 Points of Interest Public Infrastructure
- ★ Points of Interest Recreational and Environmental
- 🛰 Underground Electrical Cables

Industrial Land Use Map - Slice A

Order Details


Order Number:148421159_1_1Customer Ref:STP4262National Grid Reference:288840, 66300Slice:ASite Area (Ha):0.97Search Buffer (m):1000

Site Details

Land at Edginswell, Torquay

Tel: Fax: Web:

General

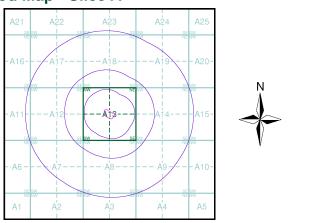
🔼 Specified Site

- C Specified Buffer(s)
- X Bearing Reference Point

Agency and Hydrological (Flood)

Extreme Flooding from Rivers or Sea without Defences (Zone 2)

Flooding from Rivers or Sea without Defences (Zone 3)


Area Benefiting from Flood Defence

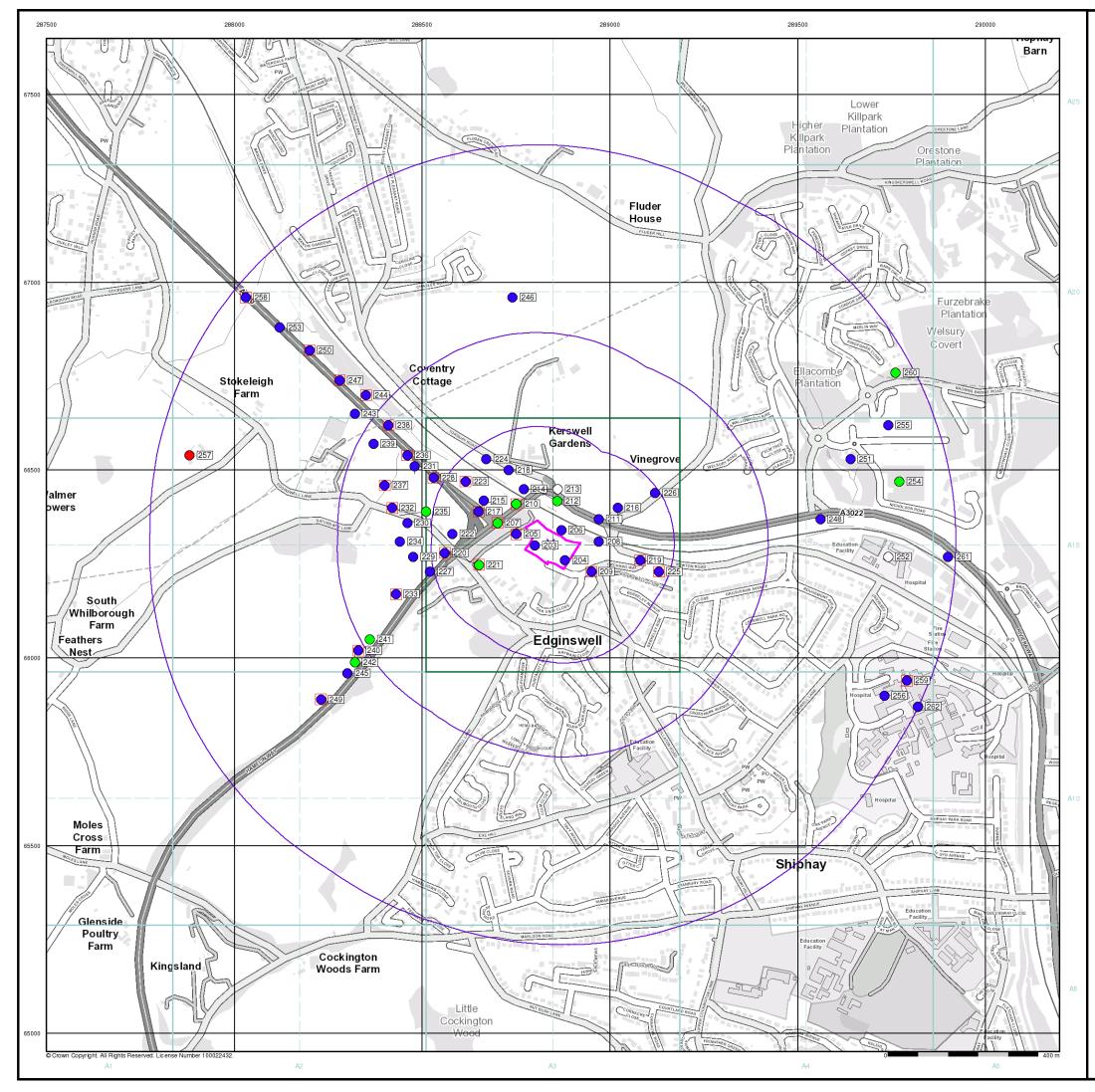
Flood Water Storage Areas

--- Flood Defence

Flood Map - Slice A

Order Details

Order Number: Customer Ref: National Grid Reference: 288840, 66300 Slice: Α Site Area (Ha): Search Buffer (m):


148421159_1_1 STP4262 0.97 1000

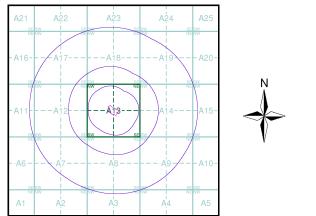
Site Details

Land at Edginswell, Torquay

Tel: Fax: Web:

General

- 🔼 Specified Site
- Specified Buffer(s)
- X Bearing Reference Point
- 8 Map ID
- Several of Type at Location


Agency and Hydrological (Boreholes)

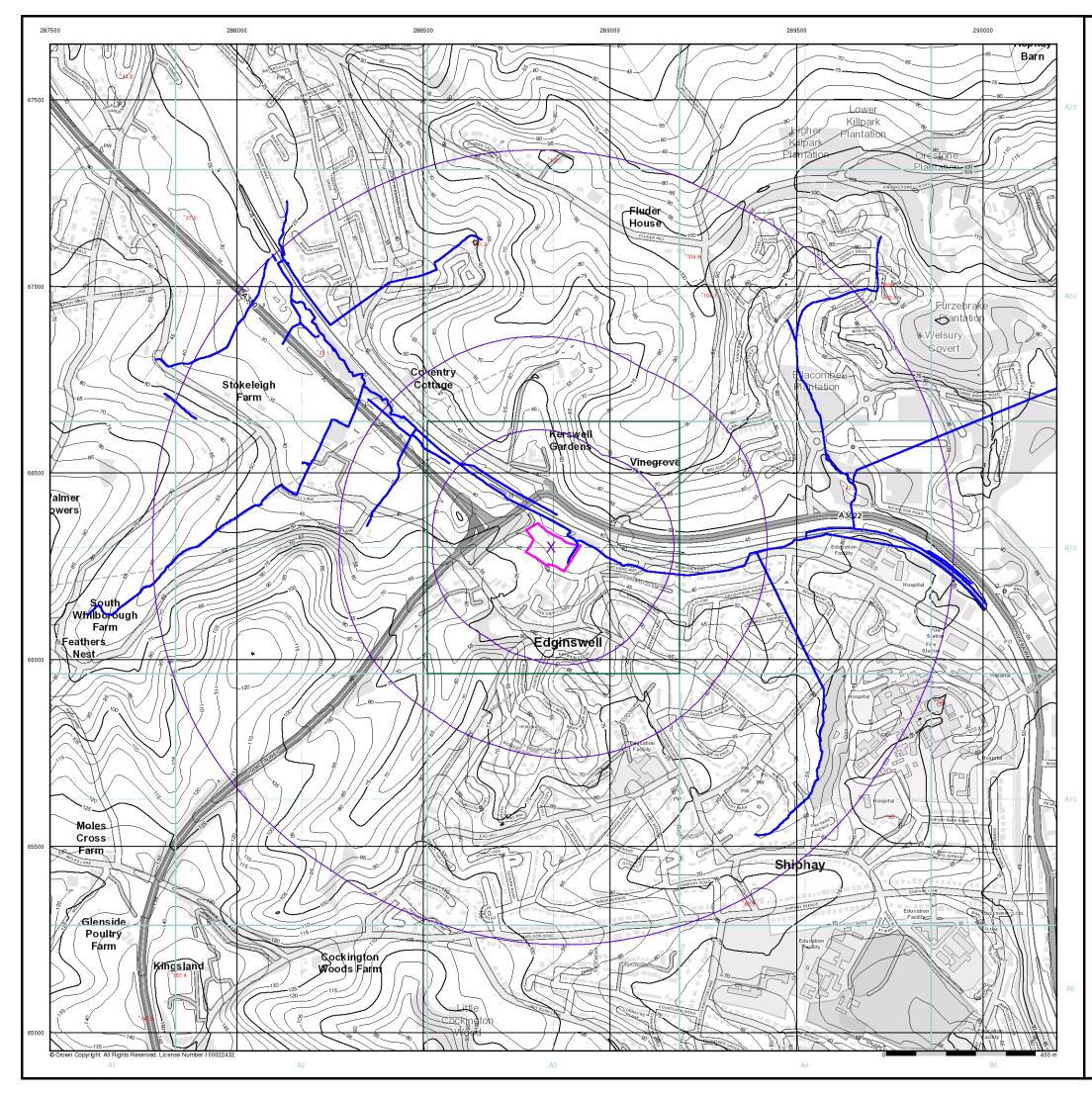
- 😑 BGS Borehole Depth 0 10m
- 🔵 BGS Borehole Depth 10 30m
- 🔴 BGS Borehole Depth 30m +
- Confidential
- ⊖ Other

For Borehole information please refer to the Borehole .csv file which accompanied this slice.

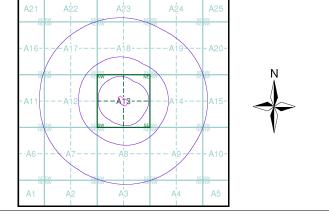
A copy of the BGS Borehole Ordering Form is available to download from the Support section of www.envirocheck.co.uk.

Borehole Map - Slice A

Order Details


Order Number:	148421159 1 1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

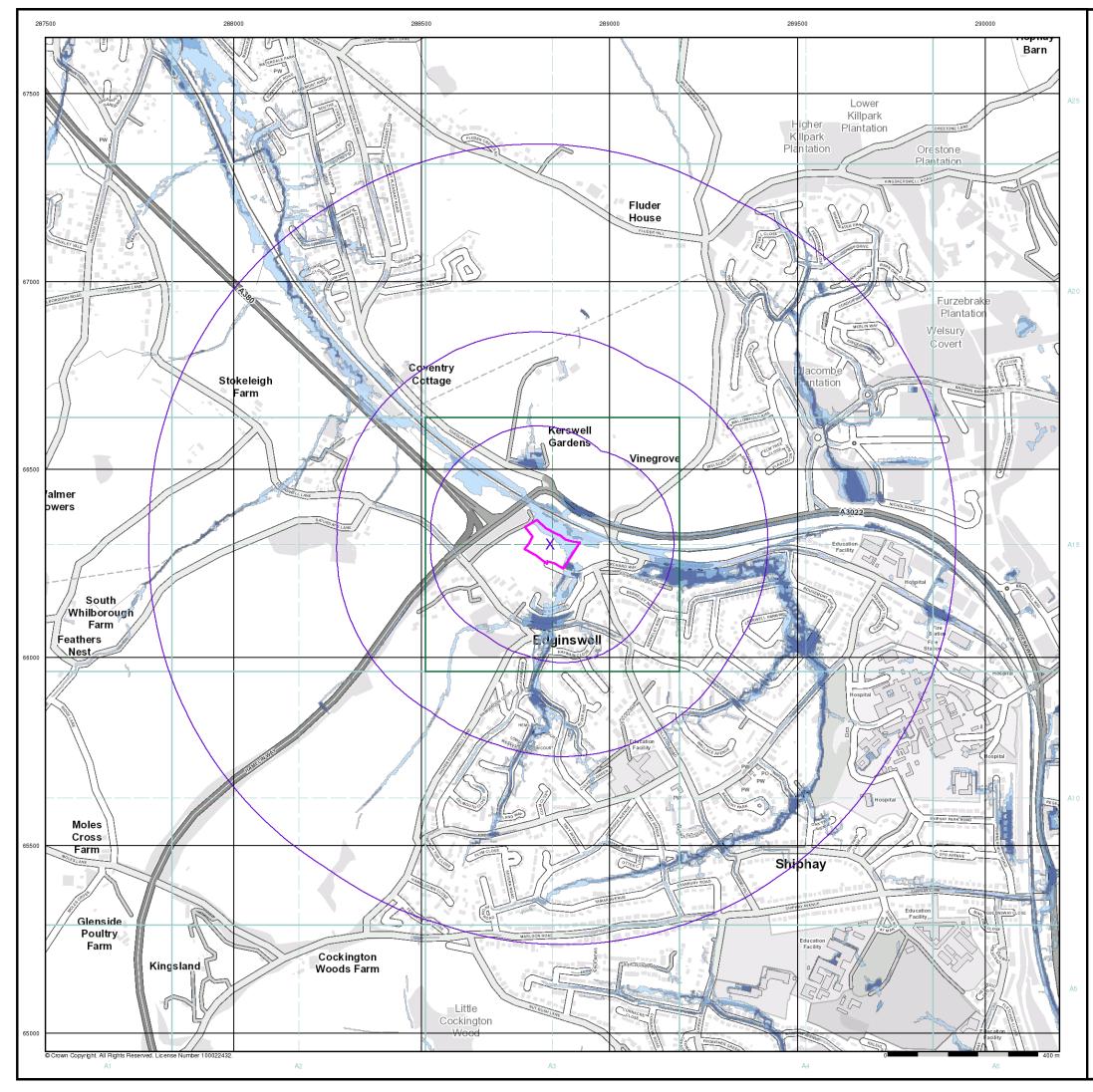
Site Details


Land at Edginswell, Torquay

Tel: Fax: Web:

General Specified Site C Specified Buffer(s) X Bearing Reference Point **OS Water Network Data** - Canal Drain Reservoir Other Foreshore -- Lake Marsh 🕶 😁 🐐 Transfer - Tidal River ---- Lock Or Flight Of Locks Inland River --- Sea Contours (height in meters) =MLW= Mean Low Water Standard Contour +05 -MHW- Mean High Water Master Contour Spot Height 167.3 **OS Water Network Map - Slice A**

Order Details


0.00.00	
Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details

Land at Edginswell, Torquay

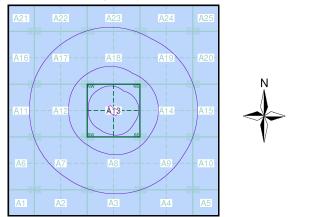
Tel: Fax: Web:

General

- 🔼 Specified Site
- Specified Buffer(s)
- X Bearing Reference Point

Risk of Flooding from Surface Water

Low - 1000 Year Return


Suitability See the suitability map below

National to county County to town Town to street

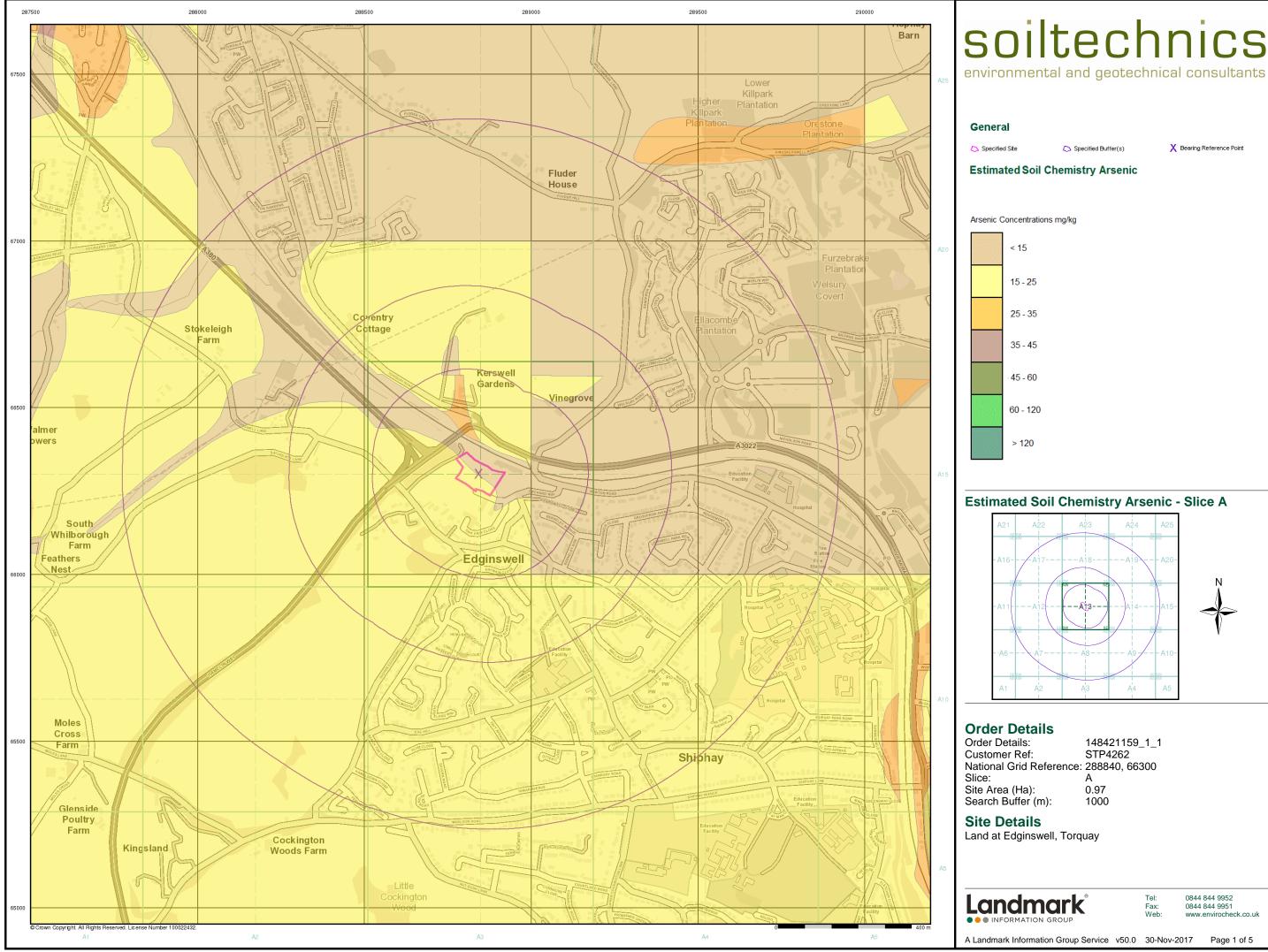
Street to parcels of land

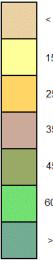
Property

EA/NRW Suitability Map - Slice A

Order Details

Order Number:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000


Site Details


Land at Edginswell, Torquay

Tel: Fax: Web: 0844 844 9952 0844 844 9951 www.envirocheck.co.uk

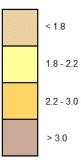
A Landmark Information Group Service v50.0 30-Nov-2017 Page 6 of 6

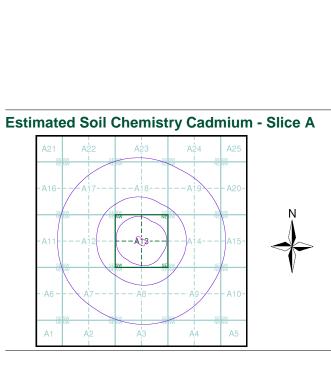


Order Details:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

www.envirocheck.co.uk

General

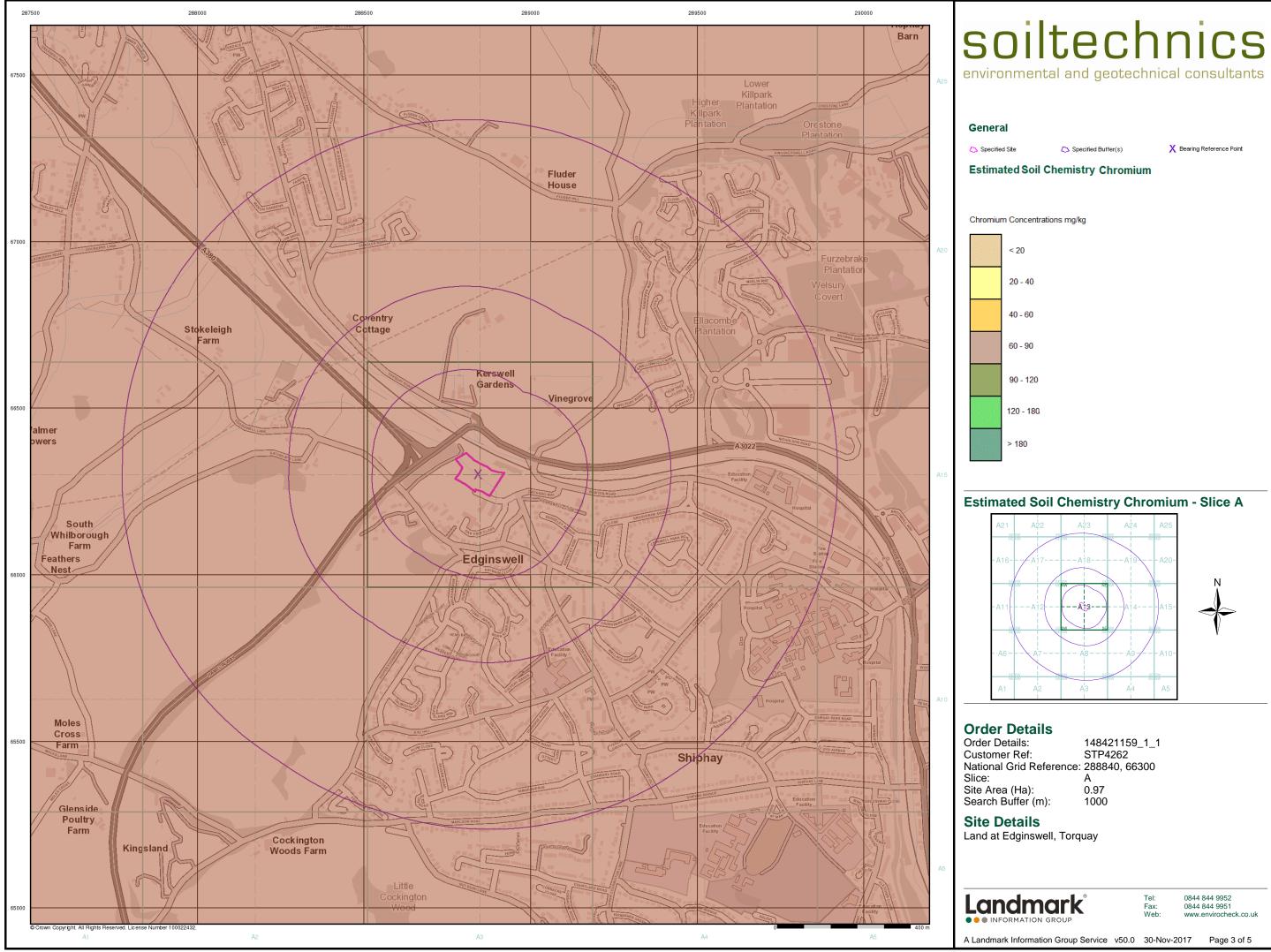

🔼 Specified Site


Specified Buffer(s)

X Bearing Reference Point

Estimated Soil Chemistry Cadmium

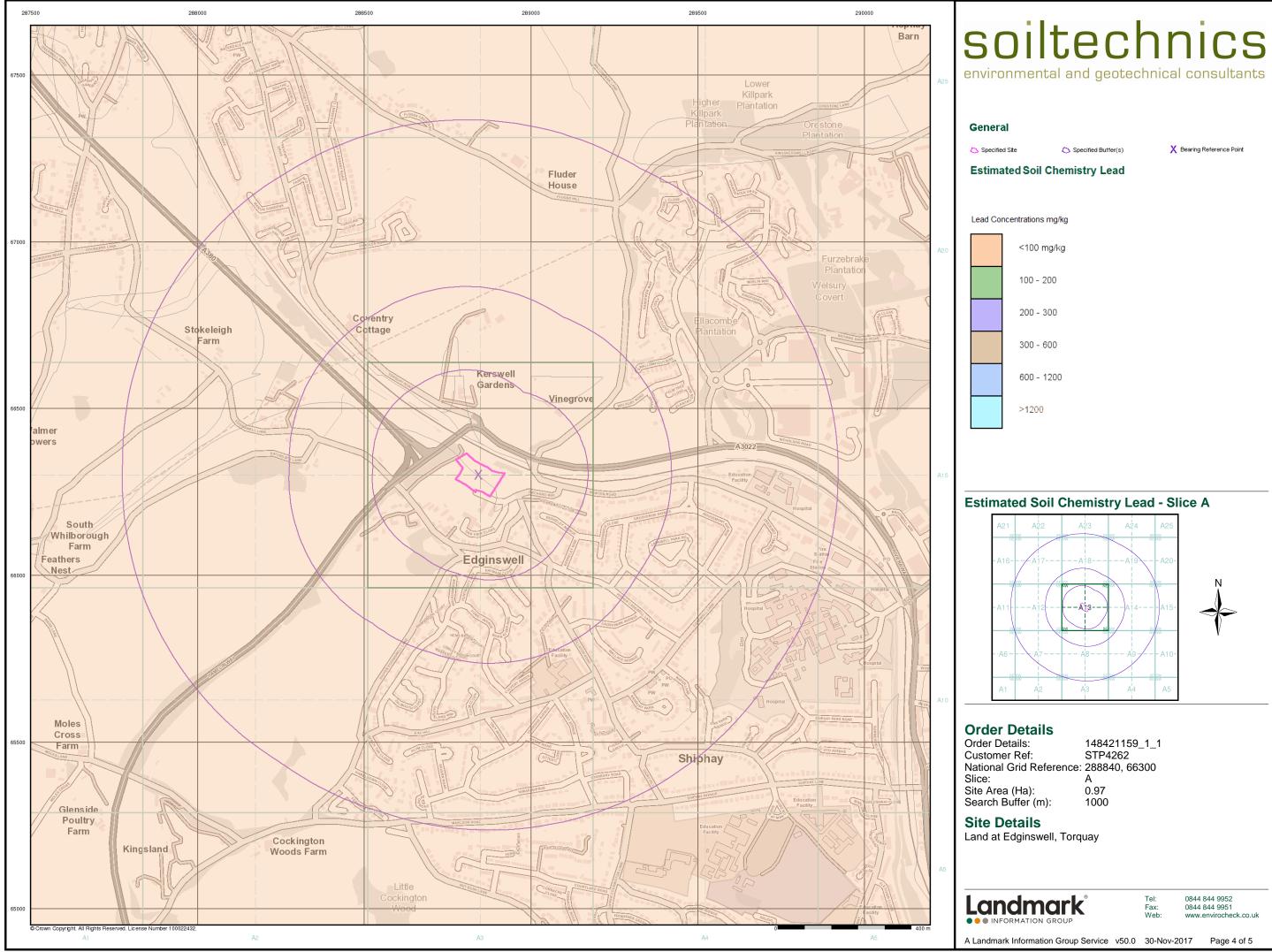
Cadmium Concentrations mg/kg

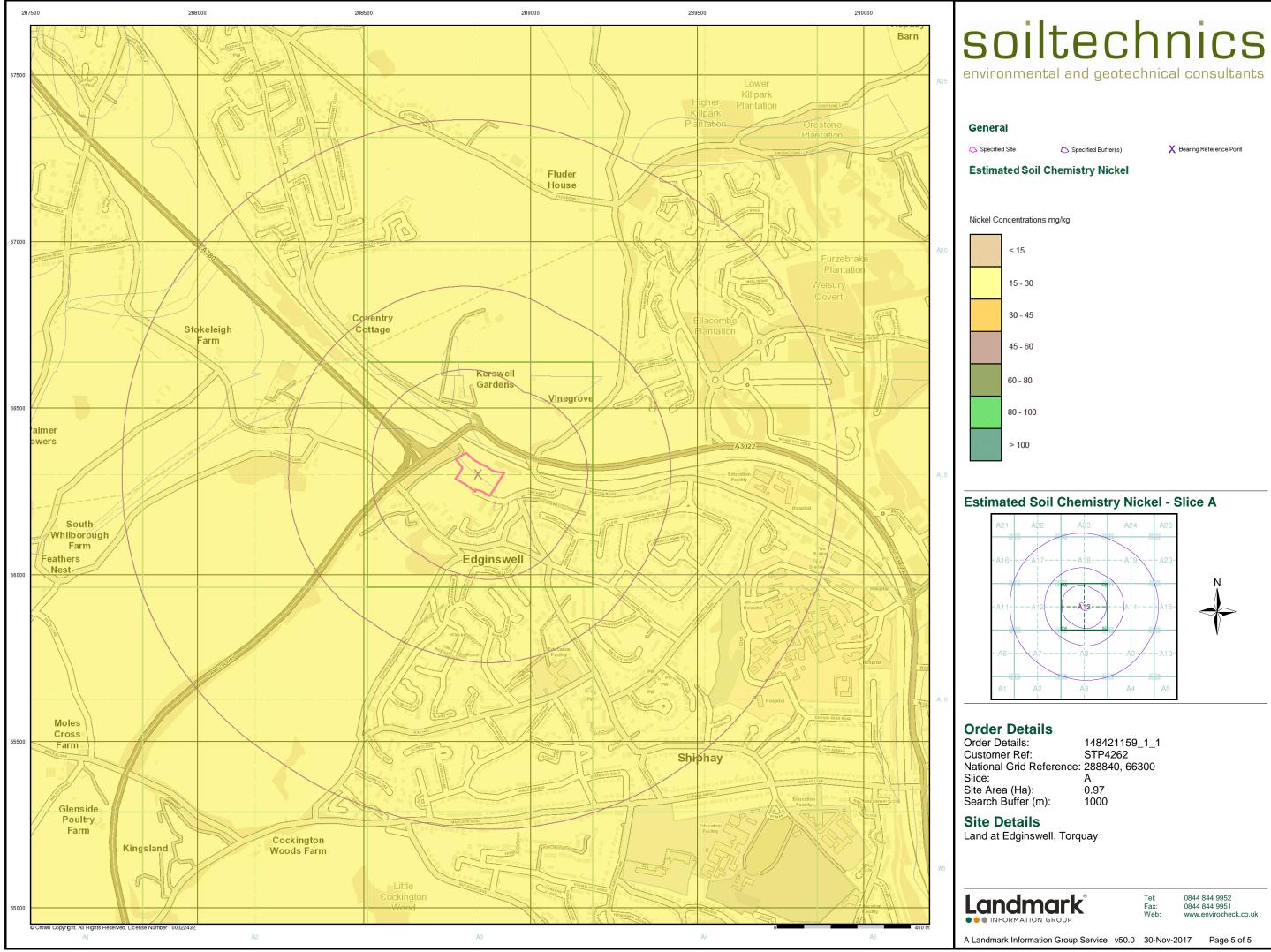

Order Details

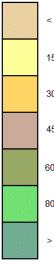
Order Details:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Site Details

Land at Edginswell, Torquay







Order Details:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000

Order Details:	148421159_1_1
Customer Ref:	STP4262
National Grid Reference:	288840, 66300
Slice:	A
Site Area (Ha):	0.97
Search Buffer (m):	1000